


Structural and Stress Analysis



Also available from Taylor & Francis

Design of Structural Elements 2nd edition
C. Arya Hb: ISBN 9780415268448

Pb: ISBN 9780415268455

Examples in Structural Analysis
W.M.C. McKenzie Hb: ISBN 9780415370530

Pb: ISBN 9780415370547

Structural Analysis 5th edition
A. Ghali, A. Neville and T.G. Brown Hb: ISBN 9780415280914

Pb: ISBN 9780415280921

Structures: From Theory to Practice
A. Jennings Hb: ISBN 9780415268424

Pb: ISBN 9780415268431

Information and ordering details

For price availability and ordering visit our website www.tandfbuiltenvironment.com/

Alternatively our books are available from all good bookshops.



Structural and Stress Analysis
Theories, tutorials and examples

Jianqiao Ye



First published 2008
by Taylor & Francis
2 Park Square, Milton Park, Abingdon, Oxon OX14 4RN

Simultaneously published in the USA and Canada
by Taylor & Francis
270 Madison Ave, New York, NY 10016, USA

Taylor & Francis is an imprint of the
Taylor & Francis Group, an informa business

© 2008 Jianqiao Ye

All rights reserved. No part of this book may be reprinted or
reproduced or utilised in any form or by any electronic,
mechanical, or other means, now known or hereafter
invented, including photocopying and recording, or in any
information storage or retrieval system, without permission in
writing from the publishers.

The publisher makes no representation, express or implied, with regard
to the accuracy of the information contained in this book and cannot
accept any legal responsibility or liability for any efforts or
omissions that may be made.

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Cataloging in Publication Data
Ye, Jianqiao, 1957-
Structural and stress analysis : theories, tutorials and examples / Jianqiao Ye.
p. cm.
Includes bibliographical references and index.
ISBN 978-0-415-36865-0 (hardback : alk. paper) --
ISBN 978-0-415-36879-7 (paperback : alk.
paper) -- ISBN 978-0-203-02900-8 (ebook) 1. Structural
analysis (Engineering) I. Title.
TA645.Y43 2008
624.1’71--dc22
2007030738

ISBN10: 0–415–36865–0 (hbk)
ISBN10: 0–415–36879–0 (pbk)
ISBN10: 0–203–02900–3 (ebk)

ISBN13: 978–0–415–36865–0 (hbk)
ISBN13: 978–0–415–36879–7 (pbk)
ISBN13: 978–0–203–02900–8 (ebk)

This edition published in the Taylor & Francis e-Library, 2008.

“To purchase your own copy of this or any of Taylor & Francis or Routledge’s
collection of thousands of eBooks please go to www.eBookstore.tandf.co.uk.”

ISBN 0-203-02900-3 Master e-book ISBN



To my wife Qin and my daughter Helen
with love and gratitude





Contents

Preface xi
Acknowledgements xiii

1 Introduction 1

1.1 Forces and moments 1
1.2 Types of force and deformation 3

1.2.1 Force 3
1.2.2 Deformation 3

1.3 Equilibrium system 3
1.3.1 The method of section 3
1.3.2 The method of joint 4

1.4 Stresses 5
1.4.1 Normal stress 5
1.4.2 Shear stress 6

1.5 Strains 7
1.6 Strain–stress relation 7
1.7 Generalized Hooke’s law 8
1.8 Strength, stiffness and failure 10
1.9 Key points review 11
1.10 Basic approach for structural analysis 12
1.11 Conceptual questions 13
1.12 Mini test 14

2 Axial tension and compression 16

2.1 Sign convention 16
2.2 Normal (direct) stress 16
2.3 Stresses on an arbitrarily inclined plane 17
2.4 Deformation of axially loaded members 18

2.4.1 Members of uniform sections 18
2.4.2 Members with step changes 18



viii Contents

2.5 Statically indeterminate axial deformation 19
2.6 Elastic strain energy of an axially

loaded member 20
2.6.1 Strain energy U in an axially loaded member 20
2.6.2 Strain energy density, U0 20

2.7 Saint-Venant’s principle and stress concentration 20
2.8 Stresses caused by temperature 21
2.9 Key points review 22
2.10 Recommended procedure of solution 23
2.11 Examples 23
2.12 Conceptual questions 31
2.13 Mini test 33

3 Torsion 36

3.1 Sign convention 36
3.2 Shear stress 37
3.3 Angle of twist 38
3.4 Torsion of rotating shafts 38
3.5 Key points review 39
3.6 Recommended procedure of solution 39
3.7 Examples 40
3.8 Conceptual questions 49
3.9 Mini test 51

4 Shear and bending moment 53

4.1 Definition of beam 54
4.2 Shear force and bending moment 54
4.3 Beam supports 54
4.4 Sign convention 54

4.4.1 Definition of positive shear 54
4.4.2 Definition of positive bending moment 55

4.5 Relationships between bending moment, shear force and
applied load 56

4.6 Shear force and bending moment diagrams 57
4.7 Key points review 57
4.8 Recommended procedure of solution 58
4.9 Examples 58
4.10 Conceptual questions 75
4.11 Mini test 77

5 Bending stresses in symmetric beams 80

5.1 Normal stresses in beams 81
5.2 Calculation of second moment of inertia 82
5.3 Shear stresses in beams 84
5.4 Key points review 85
5.5 Recommended procedure of solution 86
5.6 Examples 87



Contents ix

5.7 Conceptual questions 102
5.8 Mini test 105

6 Deflection of beams under bending 107

6.1 Sign convention 108
6.2 Equation of beam deflection 108

6.2.1 The integration method 108
6.2.2 The superposition method 109
6.2.3 Macaulay’s method (step function method) 110

6.3 Key points review 112
6.4 Examples 113

6.4.1 Examples of the integration method 113
6.4.2 Examples of the superposition method 118
6.4.3 Examples of Macaulay’s method 123

6.5 Conceptual questions 127
6.6 Mini test 128

7 Complex stresses 130

7.1 Two-dimensional state of stress 131
7.1.1 Sign convention of stresses 132
7.1.2 Analytical method 133
7.1.3 Graphic method 137

7.2 Key points review 138
7.2.1 Complex stress system 138
7.2.2 Mohr’s circle 139

7.3 Examples 139
7.4 Conceptual questions 148
7.5 Mini test 149

8 Complex strains and strain gauges 151

8.1 Strain analysis 154
8.2 Strain measurement by strain gauges 155
8.3 Key points review 156

8.3.1 Complex strain system 156
8.3.2 Strain measurement by strain gauges 157

8.4 Examples 157
8.5 Conceptual questions 164
8.6 Mini test 164

9 Theories of elastic failure 166

9.1 Maximum principal stress criterion 167
9.2 Maximum shear stress criterion (Tresca theory) 169
9.3 Distortional energy density (von Mises theory) criterion 169
9.4 Special forms of Tresca and von Mises criterions 170
9.5 Key points review 171
9.6 Recommended procedure of solution 171



x Contents

9.7 Examples 171
9.8 Conceptual questions 176
9.9 Mini test 176

10 Buckling of columns 178

10.1 Euler formulas for columns 179
10.1.1 Euler formula for columns with pinned ends 179
10.1.2 Euler formulas for columns with other ends 180

10.2 Limitations of Euler formulas 181
10.3 Key points review 182
10.4 Examples 183
10.5 Conceptual questions 192
10.6 Mini test 193

11 Energy method 195

11.1 Work and strain energy 195
11.1.1 Work done by a force 195
11.1.2 Strain energy 196

11.2 Solutions based on energy method 196
11.2.1 Castigliano’s first theorem 197
11.2.2 Castigliano’s second theorem 197

11.3 Virtual work and the principle of virtual work 197
11.3.1 Virtual work 197
11.3.2 The principle of virtual work 198
11.3.3 Deflection of a truss system 199

11.4 Key points review 200
11.5 Examples 200
11.6 Conceptual questions 212
11.7 Mini test 212

Index 215



Preface

This book is not intended to be an additional textbook of structural and stress analysis for
students who have already been offered many excellent textbooks which are available on the
market. Instead of going through rigorous coverage of the mathematics and theories, this
book summarizes major concepts and important points that should be fully understood before
students claim that they have successfully completed the subject. One of the main features
of this book is that it aims at helping students to understand the subject through asking and
answering conceptual questions, in addition to solving problems based on applying the derived
formulas.

It has been found that by the end of a Structural and Stress Analysis course, most of our
students can follow the instructions given by their lecturers and can solve problems if they can
identify suitable formulas. However, they may not necessarily fully understand what they are
trying to solve and what is really meant by the solution they have obtained. For example, they
may have found the correct value of a stress, but may not understand what is meant by “stress”.
They may be able to find the direction of a principal stress if they know the formula, but may not
be able to give a rough prediction of the direction without carrying out a calculation. To address
these issues, understanding all the important concepts of structures and stresses is essential.
Unfortunately, this has not been appropriately highlighted in the mainstream textbooks since
the ultimate task of these textbooks is to establish the fundamental theories of the subject and
to show the students how to derive and use the formulas.

Leaving out all the detailed mathematics and theories found in textbooks, each chapter of
this book begins with a summary of key issues and relevant formulas. This is followed by a key
points review to identify important concepts that are essential for students’ understanding of the
chapter. Next, numerical examples are used to illustrate these concepts and the application of
the formulas. A short discussion of the problem is always provided before following the solution
procedure to make sure that students know not only how but also why a formula should be used
in such a way. Unlike most of the textbooks available on the market, this book asks students to
answer only questions that require minimum or no numerical calculations. Questions requiring
extensive numerical calculations are not duplicated here since they can be easily found from
other textbooks. The conceptual questions ask students to review important concepts and test
their understanding of the concepts. These questions can also be used by lecturers to organize
group discussions in the class. At the end of each chapter, there is a mini test including both
conceptual and numerical questions.

Due to the above-mentioned features, this book is written to be used with a textbook of
your choice, as a useful companion. It is particularly useful when students are preparing for
their examinations. Asking and answering these conceptual questions and reviewing the key
points summarized in this book is a structured approach to assess whether or not the subject



xii Preface

has been understood and to identify the area where further revision is needed. The book is
also a useful reference for those who are taking an advanced Structural and Stress Analysis
course. It provides a quick recovery of the theories and important concepts that have been
learnt in the past, without the need to pick up those from a more detailed and, indeed, thicker
textbook.
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1 Introduction

Any material or structure may fail when it is loaded. The successful design of a structure requires
detailed structural and stress analysis in order to assess whether or not it can safely support the
required loads. Figure 1.1 shows how a structure behaves under applied loads.

To prevent structural failure, a typical design must consider the following three major aspects:

1 Strength – The structure must be strong enough to carry the applied loads.
2 Stiffness – The structure must be stiff enough such that only allowable deformation occurs.
3 Stability – The structure must not collapse through buckling subjected to the applied

compressive loads.

The subject of structural and stress analysis provides analytical, numerical and experimental
methods for determining the strength, stiffness and stability of load-carrying structural members.

1.1 Forces and moments

A force is a measure of its tendency to cause a body to move or translate in the direction of the
force. A complete description of a force includes its magnitude and direction. The magnitude
of a force acting on a structure is usually measured by Newton (N), or kilonewton (kN). In stress
analysis, a force can be categorized as either external or internal. External forces include, for
example, applied surface loads, force of gravity and support reactions, and the internal forces
are the resisting forces generated within loaded structural elements. Typical examples of applied
external forces include the following:

(a) Point load, where force is applied through a point of a structure (Figure 1.2(a))
(b) Distributed load, where force is applied over an area of a structure (Figure 1.2(b))

The moment of a force is a measure of its tendency to cause a body to rotate about a specific
point or axis. In order to develop a moment about, for example, a specific axis, a force must act
such that the body would begin to twist or bend about the axis. The magnitude of the moment
of a force acting about a point or axis is directly proportional to the distance of the force from
the point or axis. It is defined as the product of the force and the lever arm. The lever arm is the
perpendicular distance between the line of action of the force and the point about which the
force causes rotation. A moment is usually measured by Newton-meters (Nm), or kilonewton-
meters (kN m). Figure 1.3 shows how a moment about the beam–column connection is caused
by the applied point load F .
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Structures subjected to external loads

Internal forces 
Normal forces 
Bending moments 
Shear forces 
Twisting moments 

Stresses  
Normal stresses 
Shear stresses 

Strains
Normal strains 
Shear strains 

Material properties

Deformation 
Extension/contraction 
Deflection/bending 
Distortion/twisting 

Failure 
Yield 
Fracture 
Buckling 
Fatigue 
Rupture 

Figure 1.1

(a)

(b) 

Figure 1.2

F

Action line

Lever arm

Figure 1.3
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1.2 Types of force and deformation

1.2.1 Force

On a cross-section of a material subject to external loads, there exist four different types of
internal force (Figure 1.4):

1 normal force, F, which is perpendicular to the cross-section;
2 shear force, V, which is parallel to the cross-section;
3 bending moment, M, which bends the material; and
4 twisting moment (torque), T, which twists the material about its central axis.

1.2.2 Deformation

Table 1.1 shows the most common types of force and their associated deformations. In a
practical design, the deformation of a member can be a combination of the basic deformations
shown in Table 1.1.

1.3 Equilibrium system

In static structural and stress analysis, a system in equilibrium implies that:

• the resultant of all applied forces, including support reactions, must be zero;
• the resultant of all applied moments, including bending and twisting moments, must

be zero.

The two equilibrium conditions are commonly used to determine support reactions and internal
forces on cross-sections of structural members.

1.3.1 The method of section

One of the most basic analyses is the investigation of the internal resistance of a structural
member, that is, the development of internal forces within the member to balance the effect of
the externally applied forces. The method of section is normally used for this purpose. Table 1.2
shows how the method of section works.

In summary, if a member as a whole is in equilibrium, any part of it must also be in equilibrium.
Thus, the externally applied forces acting on one side of an arbitrary section must be balanced
by the internal forces developed on the section.
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Table 1.1 Basic types of deformation

Force Deformation Description

Normal force,
Axial force, Thrust

The member is being stretched by
the axial force and is in tension.
The deformation is characterized
by axial elongation.

Normal force,
Axial force, Thrust

The member is being compressed
by the axial force and is in
compression. The deformation is
characterized by axial shortening.

Shear force The member is being sheared.
The deformation is characterized
by distorting a rectangle into a
parallelogram.

Torque, Twist
moment

The member is being twisted and
is in torsion. The deformation is
characterized by angle of twist.

Bending moment The member is being bent and
the deformation is characterized
by a bent shape.

Table 1.2 The method of section

A

FF
Consider a single bar under tension and the internal force on
section A.

A

FF
Cut the bar into two parts at A and separate.

F F
Take one of the parts and consider equilibrium. The resultant force
developed on section A must be equal to F.

A

F F
The force is also acting on the face of the right-hand-side part but
in an opposite direction.

1.3.2 The method of joint

The analysis or design of a truss requires the calculation of the forces in each of its members.
Taking the entire truss as a free body, the forces in the members are internal forces. In order
to determine the internal forces in the members jointed at a particular joint, for example, joint
A in Figure 1.5, the joint can be separated from the truss system by cutting all the members
around it. On the sections of the cuts there exist axial forces that can be further determined by
considering the equilibrium of the joint under the action of the internal forces and the externally
applied loads at the joint, that is, by resolving the forces in the x and y directions, respectively,
and letting the resultants be zero.
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1.4 Stresses

Stress can be defined as the intensity of internal force that represents internal force per unit
area at a point on a cross-section. Stresses are usually different from point to point. There are
two types of stresses, namely normal and shear stresses.

1.4.1 Normal stress

Normal stress is a stress perpendicular to a cross-section or cut. For example, for the simple
structural element shown in Figure 1.6(a), the normal stress on section m–m can be calculated as

Normal stress ���= force (on section m–m)
area (of section m–m)

(1.1a)

The basic unit of stress is N/m2, which is also called a Pascal.
In general a stress varies from point to point (Figure 1.6(b)). A general stress can be calcu-

lated by

F

F

m

m

m

m

F

F

Figure 1.6(a)

∆A

∆F

P

Figure 1.6(b)
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stress at point P= lim
�A→0

�F

�A
(1.1b)

where �F is the force acting on the infinitesimal area, �A, surrounding P.

1.4.2 Shear stress

Shear stress is a stress parallel to a cross-section or cut. For example, for the plates connected
by a bolt, shown in Figure 1.7(a), the forces are transmitted from one part of structure to the
other part by causing stresses in the plane parallel to the applied forces. These stresses are shear
stresses. To compute the shear stresses, a cut is taken through the parallel plane and uniform
distribution of the stresses over the cut is assumed. Thus:

� = force
area

= P

A
(1.2)

where A is the cross-sectional area of the bolt.
At a point in a material, shear stresses always appear in pair acting on two mutually perpen-

dicular planes. They are equal in magnitude, but in an opposite sense, that is, either towards or
away from the point (Figure 1.7(b)).

From the definition of normal and shear stresses, the following three characteristics must be
specified in order to define a stress:

1 the magnitude of the stress;
2 the direction of the stress; and
3 the plane (cross-section) on which the stress is acting.

P

P
P

P

P
τ

Figure 1.7(a)

τ

Figure 1.7(b)
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L

F F

L + ∆L

Figure 1.8

1.5 Strains

Strain is a measure of relative deformation. Strains can be categorized as normal and shear
strains.

Normal strain is a measure of the change in length per unit length under stress (Figure 1.8).
It is measured by the following formula:

Normal strain���= change in length
original length

= �L

L
(1.3)

Shear strain is a measure of the change caused by shear stresses in the right angle between
two fibres within a plane (Figure 1.9).

Shear strain � = �1+�2 (1.4)

Shear strains are dimensionless.

1.6 Strain–stress relation

Strains and stresses always appear in pair and their relationship depends on the properties of
materials. Strain–stress relation is also termed as Hooke’s law, which determines how much
strain occurs under a given stress. For materials undergoing linear elastic deformation, stresses
are proportional to strains. Thus, for the simple load cases shown in Figures 1.8 and 1.9, the
strain–stress relations are:

� = E�

� = G�
(1.5)

α1

α2

τ

Figure 1.9
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(a) bar before loading

(b) bar after loading

Figure 1.10

where E is called modulus of elasticity or Young’s modulus. G is termed as shear modulus. They
are all material-dependent constants and measure the unit of stress, for example, N/mm2, since
strains are dimensionless. For isotropic materials, for example, most metals, E and G have the
following relationship:

G= E

2�1+	�
(1.6)

In Equation (1.6), 	 is called Poisson’s ratio, which is also an important material constant.
Figure 1.10 shows how a Poisson’s ratio is defined by comparing axial elongation and lateral
contraction of a prismatic bar in tension. Poisson’s ratio is defined as:

Poisson’s ratio (	�=
∣∣∣∣ lateral strainaxial strain

∣∣∣∣
=− lateral strain �contraction�

axial strain �tension�

(1.7)

A negative sign is usually assigned to a contraction. Poisson’s ratio is a dimensionless quality
that is constant in the elastic range for most materials and has a value between 0 and 0.5.

1.7 Generalized Hooke’s law

Generalized Hooke’s law is an extension of the simple stress–strain relations of Equation (1.5)
to a general case where stresses and strains are three-dimensional.

Consider a cube subjected to normal stresses,�x , �y and �z , in the directions of x, y, and z

coordinate axes, respectively (Figure 1.11(a)).
From Figure 1.11, we have

Strain of Case (a) = strain of Case (b) + strain of Case (c) + strain of Case (d)

In particular, considering the normal strain of Case (a) in the x direction and applying
Equation (1.5) and Equation (1.7) to Cases (b), (c) and (d), we have

Normal strain in the x direction

By �x

Figure 1.11(b)
By �y

Figure 1.11(c)
By �z

Figure 1.11(d)

�x = �x
E

	 =− �x
�y

�x =−	�y

	 =− �x
�z

�x =−	�z
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(c) (d)

(a)

(b)

z

x

y

σx σz

σz

σyσy

σx

σz
σx

σy σy

σz

σx

σx = Eεx
σy = Eεy

σz = Eεz

Figure 1.11

Thus, the normal strain of Case (a) in the x direction is as follows:

�x =
�x

E
−	�y −	�z

From Figures 1.11(c) and 1.11(d):

�y =
�y

E



�z =
�z

E

Then:

�x =
�x

E
−	

�y

E
−	

�z

E
= 1

E

[
�x −	��y +�z�

]
(1.8a)

The strains in the y and z directions can also be calculated by following exactly the same
procedure described above:

�y =
�y

E
−	

�x

E
−	

�z

E
= 1

E

[
�y −	��x +�z�

]
�z =

�z

E
−	

�x

E
−	

�y

E
= 1

E

[
�z −	��x +�y�

] (1.8b)

For a three-dimensional case, shear stresses and shear strains may occur within three independent
planes, that is, in the x–y, x–z and y–z planes, for which the following three shear stress and
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strain relations exist:

�xy =
�xy

G

�xz =
�xz
G

�yz =
�yz

G

(1.8c)

Equation (1.8) is the generalized Hooke’s law. The application of Equation (1.8) is limited to
isotropic materials in the linear elastic range.

The generalized Hooke’s law of Equation (1.8) represents strains in terms of stresses. The
following equivalent form of Hooke’s law represents stresses in terms of strains:

�x =
E�1−	�

�1+	��1−2	�

[
�x +

	

1−	
��y +�z�

]

�y =
E�1−	�

�1+	��1−2	�

[
�y +

	

1−	
��x +�z�

]

�z =
E�1−	�

�1+	��1−2	�

[
�z +

	

1−	
��y +�x�

]
�xy = G�xy

�xz = G�xz

�yz = G�yz

(1.9)

1.8 Strength, stiffness and failure

Failure is a condition that prevents a material or a structure from performing the intended task.
For the cantilever shown in Figure 1.12, the following two questions, for example, can be asked:

(i) What is the upper limit of stress that can be reached in the material of the beam?

The answer to this question provides a strength criterion that can be adopted in the
design of the beam (Figure 1.13):

• An upper limit at which the stress–strain relationship departs from linear is called the
proportional limit, �pl.

• An upper limit at which permanent deformation starts is called the yield strength, �Yield.
• An upper limit, that is the maximum stress a material can withstand is called the ultimate

strength, �u.

Strength is a property of material.

(ii) What is the maximum tip deflection that is acceptable?

The answer to this question provides a stiffness design criterion that represents the stiffness
or the resistance of an elastic body to deformation.

Factors that influence stiffness of a structural member include material modulus, structural
configuration and mode of loading. For example, the tip deflection of a cantilever varies if the
materials, length, shape of cross-section or the applied load change.
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Figure 1.12

Plastic regionElastic
region

σpl

σYield

σu

εε

σ

Figure 1.13

Strength and stiffness are measurements of resistance to failure. Violation of any of the
above criterions is defined as failure. In a typical design, a primary task is to choose materials
and member dimensions such that:

• stresses are maintained below the limits for the chosen materials;
• deformations are maintained below the limits for the structure application.

1.9 Key points review

• An applied force can be in the form of point load, distributed load or moment.
• An applied load causes deformation and eventually failure of a structure.
• An applied force causes internal forces/stresses.
• Stress is defined as intensity of internal force at a point of material.
• A stress has magnitude and direction, and is always related to a special plane (cross-

section).
• Normal stress is a stress that is perpendicular to a cross-section and causes tension or

compression.
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• Shear stress is a stress that is parallel to a cross-section and causes distortion or
twisting.

• Strain is a measurement of relative deformation at a point of material, and is a
nondimensional quantity.

• Normal strain represents either an elongation or a contraction.
• Shear strain is measurement of distortion, measured by change of a right angle.
• The relationship between stresses and strains depends on properties of materials. For

linear elastic materials, the relationship is called Hooke’s law.
• For a linearly elastic and isotropic material, E, G and 	 are related and only two of

them are independent.
• Different materials normally have different strength and the strength depends only on

property of material.
• Stiffness of a member depends on not only property of material, but also geometrical

and loading conditions; stiffness is not a property of material.
• Proportional limit, �pl, is the upper limit at which the stress–strain relationship departs

from linear.
• Yield strength, �Yield, is the upper limit at which permanent deformation starts.
• Ultimate strength, �u, is the maximum stress a material can withstand.

1.10 Basic approach for structural analysis

The solution of a stress problem always follows a similar procedure that is applicable for
almost all types of structures. Figure 1.14 presents a flow chart for the procedure. In
general, either deformations (strains) or forces (stresses) are the quantities that need to
be computed in a structural analysis of design. The following steps represent a general
approach to the solution of a structural problem:

• Calculating support reactions is usually a start point of a stress analysis. For a statically
determinate structure, the reactions are determined by the application of equilib-
rium equations. For a statically indeterminate structure, additional equations must be
sought.

• If forces or stresses on a section are wanted, the method of section or/and the method
of joint are used to cut through the section so that the structure is cut into two parts,
i.e., two free bodies.

• A part on either side of the section is taken as a free body and required to satisfy
the equilibrium conditions. On the section concerned, the internal forces that keep
the part in equilibrium include, in a general case, an normal force, a shear force, a
bending moment and a twist moment (torque). These internal forces are found by the
application of static equilibrium of all forces acting on the free body.

• Once the internal forces on the section are determined, the stresses caused by the
forces can be calculated using appropriate formulas of stress analysis.

• From the stress solutions, Hooke’s law can be used to compute strains and then
displacements, e.g., deflection of a beam subjected to bending.

• Both the stress and the strain solutions are further used in design to meet relevant
strength and stiffness criterions.
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Hooke’s law

Loaded structure

Deformation or strain

Compatibility
Equilibrium

Conditions to satisfy

Constitute

Supports

Contraction
Bending
Deflection
Torsion

Extension

Final solution

Displacements

Internal forces/stresses

Internal stresses/forces

Shear forces
Bending moments
Twisting moments

Normal stress

Figure 1.14

1.11 Conceptual questions

1. What is the difference between applied loads and reactions?
2. What is meant by ‘stress’ and why is it a local measurement of force?
3. What is the unit for measuring stress?
4. What is the difference between a normal stress and a shear stress?
5. What is meant by ‘strain’? Is it a local measure of deformation?
6. Is a ‘larger strain’ always related to a ‘larger displacement’?
7. What is the physical meaning of ‘shear strain’?
8. What is the unit for measuring strain?
9. What is Young’s modulus and how can it be determined from a simple tension test?

10. What is the simplest form of stress and strain relationship?
11. If the displacement at a point in a material is zero, the strain at the same point must be

zero. Is this correct and why?
12. How is Poisson’s ratio defined?
13. For a linearly elastic and isotropic material, what is the relationship between Young’s

modulus, shear modulus and Poisson’s ratio?
14. How can ‘failure’ of a structural member be defined?
15. What are meant, respectively, by ‘proportional limit’, ‘yield strength’ and ‘ultimate

strength’? Are they properties of material?
16. What is meant by ‘stiffness’? Is it a property of materials and why?
17. Describe how the method of joint can be used in structural analysis.
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18. Describe how the method of section can be used in structural analysis.
19. The stress–strain curve for a hypothetical material is given below. If the strain at the top

and bottom of a section are, respectively, 2�m in tension and −2�m in compression, sketch
the stress distribution over the height of the section.

2εm

–2εm –εm

εm

fmax

–fmax

ε

σ

Figure Q1.19

1.12 Mini test

Problem 1.1: Which one of the following statements is correct?

A. Normal stress on a cross-section is always equal to the internal force acting on the
section divided by the cross-sectional area.

B. Normal stress on a cross-section is always NOT equal to the force acting on the
section divided by the cross-sectional area.

C. The internal normal force acting on a cross-section is the resultant of the normal
stresses acting on the same section.

D. Normal stresses on a cross-section are independent of the normal force acting on the
same section.

Problem 1.2: What are the differences between displacement, deformation and strain? And
whichoneof the following statements is correct in relation to the loadedbeamshown in thefigure?

A B
C

Figure P1.2

A. There are displacement, deformation and strain in BC.
B. There is only displacement in BC.
C. There are both displacement and deformation but without strain in BC.
D. There are no displacement, deformation and strain in BC.

Problem 1.3: Are the longitudinal normal stress, strain and internal normal force on the cross-
sections of the bar (Figure P1.3) constant along its axis? Can the strain of the bar be calculated
by �= �L/L and why?



Introduction 15

If the bar has a circular section whose largest and smallest diameters are D and d, respectively,
calculate the strain along the bar. Assume that the Young’s modulus of the materials is E.

PP

L

L + ∆L 

Figure P1.3

Problem 1.4: Use the method of section to determine the internal forces on the cross-section
at B (Figure P1.4).

q

A B

C

a a

Figure P1.4

Problem 1.5: Use the method of joint to determine the axial forces in the members of the truss
shown in the figure.

100 kN

D
C

B

A

3 m3 m

3 m

Figure P1.5



2 Axial tension and
compression

In practical situations, axial tension or compression is probably the simplest form of deformation.
This type of deformation is characterized by the following:

• The action line of the resultant of applied forces coincides with the axis of the member.
• Under the axial force, normal stress develops on cross-sections.
• Under the axial force, the deformation of the member is dominated by either axial

elongation or axial shortening with associated contraction or expansion, respectively,
in the lateral direction.

2.1 Sign convention

A positive axial force (stress) is defined as a force (stress) that induces elongation (Figure 2.1(a)).
A negative axial force (stress) is defined as a force (stress) that induces axial shortening
(Figure 2.1(b)).

The sign convention is designed to characterize the nature of the force or stress, rather than
in relation to a particular direction of the coordinates. For example, in Figure 2.1(a), both forces
are positive because they are all tensile. While setting up equilibrium equation, the two forces
are opposite, that is, one is positive and the other is negative.

2.2 Normal (direct) stress

The uniformly distributed normal stress, � , on section m is calculated by:

� = F

A
(2.1a)

where A is the cross-sectional area of the bar; � takes the sign of F (Figure 2.2). Since the force
and the cross-sectional area are both constant along the bar in this case, the normal stress is
also constant along the bar. This is not always true if either the force or the cross-sectional area
is variable.

Applying the simple form of Hooke’s law (Equation (1.5)) to the bars yields:

�= �

E
= F

EA
(2.1b)
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(a) tension

(b) compression

Figure 2.1

σF F

m

FF

Figure 2.2

Again this applies only when both the internal normal force and the cross-sectional area are
constant along the bar.

2.3 Stresses on an arbitrarily inclined plane

There are situations where stresses on a plane that is not perpendicular to the member axis
are of interest, for example, the direct stress �� and shear stress �� along the interface of the
adhesively bonded scarf joint shown in Figure 2.3.

From the equilibrium of:

A
Fσ =

τα

σα

pα

Normal stress (peeling stress) �� =
F

A
cos2 �= � cos2 � (2.2)

Shear stress �� =
F

2A
sin2�= �

2
sin2� (2.3)

Resultant stress pa =
F

A
cos�= � cos� (2.4)

Important observations:

(a) The maximum normal stress occurs when �= 0, i.e., �max = � .
(b) The maximum shear stress occurs when �=±45�, i.e.,�max = �/2.
(c) On the cross-section where maximum normal stress occurs (�= 0), there is no shear

stress.
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??

α

pa

FF

α
F

n

x

F

σα

τα

Figure 2.3

2.4 Deformation of axially loaded members

2.4.1 Members of uniform sections

Equations (1.1), (1.5) and (2.1) are sufficient to determine the deformation of an axially loaded
member.

N

∆ll

F

l1

F

Figure 2.4

Axial deformation:

�l = l1− l = Nl

EA
(2.5)

where N is the internal axial force due to the action of F (N = F in Figure 2.4).
When the internal axial force or/and the cross-sectional area vary along the axial

direction:

�l =
∫
l

N�x�

EA�x�
dx (2.6)

2.4.2 Members with step changes

An axially loaded bar may be composed of segments with different cross-sectional areas, internal
normal forces and even materials, as shown in Figure 2.5.

The internal axial forces, and therefore the normal stress on the cross-sections, will not
be constant along the bar (except Figure 2.5(c), where normal strains are different). They are
constant within each segments, in which cross-sectional areas, internal normal stresses and
materials are all constant. Thus, to determine the stress, strain and elongation of such a bar,
each segment must be considered independently.
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P P

P P

P P

(a)

(b)

(c)

Figure 2.5

2.5 Statically indeterminate axial deformation

There are axially loaded structural members whose internal forces cannot be simply determined
by equations of equilibrium. This type of structure is called statically indeterminate structures.
For the bar shown in Figure 2.6, for example, the two reaction forces at the fixed ends cannot
be uniquely determined by considering only the equilibrium in the horizontal direction. The
equilibrium condition gives only a single equation in terms of the two unknown reaction forces,
RA and RB. An additional condition must be sought in order to form the second equation.
Usually, for a statically indeterminate structure, additional equations come from considering
deformation of the system.

In Figure 2.6, one can easily see that the overall elongation of the bar is zero since it is
fixed at both ends. This is called geometric compatibility of deformation, which provides an
additional equation for the solution of this problem. The total deformation of the bar is calculated
considering the combined action of the two unknown support reactions and the externally
applied loads. Example 2.3 shows how this condition can be used to form an equation in terms
of the two reaction forces. In general, the following procedure can be adapted:

• Replace supports by reaction forces.
• Establish static equilibrium equation.
• Consider structural deformation, including deformation of members, to form a

geometric relationship (equation).
• Use the force-deformation relationships, e.g., Equation (2.5) for axial deformation,

and introduce them to the geometric equation.
• Solve a simultaneous equation system that consists of both the static equilibrium

equations and the geometric compatibility equations.

B
A

RA RB

Figure 2.6
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2.6 Elastic strain energy of an axially loaded member

Strain energy is the internal work done in a body by externally applied forces. It is also called
the internal elastic energy of deformation.

2.6.1 Strain energy U in an axially loaded member

For an axially loaded member with constant internal axial force:

U = N�l

2
= N2l

2EA
(2.7a)

If the member is composed of segments with different cross-sectional areas, Ai , internal normal
forces, Ni , and materials, Ei , the strain energy is the sum of the energy stored in each of the
segments as:

U =
n∑

i=1

Ni�li
2

=
n∑

i=1

N2
i li

2EiAi

(2.7b)

2.6.2 Strain energy density, U0

Strain energy density is the strain energy per unit volume. For the axially loaded member with
constant stress and strain:

U0 =
U

volume
= N2l/2EA

Al

= ��

2
= E�2

2
= � 2

2E

(2.8)

U0 is usually measured in J/m3.

2.7 Saint-Venant’s principle and stress concentration

Equation (2.1) assumes that normal stress is constant across the cross-section of a bar under an
axial load. However, the application of this formula has certain limitations.

When an axial load is applied to a bar of a uniform cross-section as shown in Figure 2.7(a),
the normal stress on the sections away from the localities of the applied concentrated loads will
be uniformly distributed over the cross-section. The normal stresses on the sections near the
two ends, however, will not be uniformly distributed because of the nonuniform deformation
caused by the applied concentrated loads. Obviously, a higher level of strain, and hence, higher
level of stress, will be induced in the vicinity of the applied loads.

Figure 2.7(a)
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Figure 2.7(b)

This observation is often useful when solving static equilibrium problems. It suggests that if
the distribution of an external load is altered to a new distribution that is however statically
equivalent to the original one, that is with the same resultant forces and moments, the stress
distribution on a section sufficiently far from where the alteration was made will be little affected.
This conclusion is termed as Saint-Venant’s principle.

The unevenly distributed stress in a bar can also be observed if a hole is drilled in a material
(Figure 2.7(b)). The stress distribution is not uniform on the cross-sections near the hole. Since the
material that has been removed from the hole is no longer available to carry any load, the load
must be redistributed over the remaining material. It is not redistributed evenly over the entire
remaining cross-sectional area, with a higher level of stress near the hole. On the cross-sections
away from the hole, the normal stress distribution is still uniform. The unevenly distributed stress
is called stress concentration.

This observation suggests that if a structural member has a sudden change of cross-section
shape or discontinuity of geometry, stress concentration will occur in the vicinity of the sudden
changes or discontinuities.

2.8 Stresses caused by temperature

In a statically determinate structure, the deformation due to temperature changes is usually
disregarded, since in such a structure the members are free to expand or contract. However, in
a statically indeterminate structure, expansion or contraction can be restricted. This sometimes
can generate significant stresses that may cause failure of a member and eventually the entire
structure.

For a bar of length L (Figure 2.8), the free deformation caused by a change in temperature,
�T , is:

�LT = �T�TL (2.9a)

and the thermal strain is, therefore:

�T = �T�T (2.9b)

where �T is the coefficient of thermal expansion.
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αt 
∆TL /2αt 

∆TL /2

L

Figure 2.8

If the bar is not completely free to expand or contract, the strain of the bar is a sum of the
above thermal strain and the strain caused by the stress that is developed due to the restraints
to free expansion, that is:

�= �

E
+�T�T (2.10)

2.9 Key points review

• A shaft/rod is long compared to its other two dimensions.
• The load applied is along the axial direction.
• If a shaft is subjected to axially applied loads, the deformation can be defined by either

axial tension or axial compression.
• The cross-section deforms uniformly.
• If a structural member is free to expand and contract, a change in temperature will

generate strains, but not stresses.
• If a structural member is prevented to expand and contract, a change in temperature

will generate both strains and stresses.
• The internal stresses and forces on sections perpendicular to the axis are normal

stresses and axial forces, respectively.
• For an axially loaded bar, the maximum normal stress at a point is the normal stress

on the section perpendicular to the axis.
• For an axially loaded bar, the maximum shear stress at a point is the shear stress acting

on the plane that is 45� to the axis.
• On the cross-section where maximum normal stress occurs, there exists no shear stress.
• On the plane of maximum shear stress, the normal stress is not necessarily zero.
• The resultant of normal stress on a cross-section is the axial force acting on the same

section.
• The axial tension or compression stiffness of a section is EA.
• Strain energy is proportional to square of forces, stresses or strains.
• For a structure system, if the number of independent equilibrium equations is less than

the number of unknown forces, the system is termed as an indeterminate system.
• To solve a statically indeterminate system, geometrical compatibility of deformation

must be considered along with the equilibrium conditions.
• Replacing a load applied on a material by an alternative, but statically equivalent load

will affect only the stress field in the vicinity.
• An abrupt change of geometry of a structural member will cause stress concentration

near the region of the change.
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2.10 Recommended procedure of solution

YesNo

Replace supports with reactions

Statically  indeterminate

Calculate
reactions from
equilibrium
equations

Establish equilibrium equations
in terms of the reactions

Establish additional equations from
compatibility of deformation and solve
for reactions

Determine internal
forces using the
method of section/the
method of joint

Calculate stresses and deformation

2.11 Examples

EXAMPLE 2.1
The uniform bar is loaded as shown in Figure E2.1(a). Determine the axial stress along the
bar and the total change in length. The cross-sectional area and the Young’s modulus of
the bar are, respectively, A= 1cm2 and E = 140GPa.

7 kN
4 kN8 kN

5 kN

CBA D

0.5 m 0.75 m 0.1 m

Figure E2.1(a)

[Solution] This is a uniform bar with forces applied between the two ends. The internal forces
along the bar are, therefore, not constant. The stresses and elongation between A and B, B and
C, and C and D must be calculated individually and the total change in length is equal to the
sum of all the elongations. The method of section is used to determine the internal forces.

Between A and B:

NAB5 kN

A

Figure E2.1(b)
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From the equilibrium of Figure E2.1(b):

NAB−5kN= 0

NAB = 5kN

The normal stress between A and B (Equation (2.1)):

�AB =
NAB

A
= 5kN

0�0001m2
= 5×104 kN/m2 = 50MPa

The elongation between A and B (Equation (2.5)):

�AB =
NABLAB
EA

= 5kN×0�5m

140×106 kN/m2×0�0001m2
= 178�57×10−6 m

Between B and C:

N BC
8 kN5 kN

BA

0.5 m

Figure E2.1(c)

From the equilibrium of Figure E2.1(c):

NAB+8kN−5kN= 0

NAB =−8kN+5kN=−3kN (compression)

The normal force should be in the opposite direction of the assumed NBC.
The normal stress between B and C (Equation (2.1)):

�BC = NBC

A
= −3kN

0�0001m2
=−3×104 kN/m2 =−30MPa

The elongation between B and C (Equation (2.5)):

�BC = NBCLBC
EA

= −3kN×0�75m

140×106 kN/m2×0�0001m2
=−160�71×10−6 m

Between C and D:

NCD
4 kN8 kN5 kN

CBA

0.5 m 0.75 m

Figure E2.1(d)
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From the equilibrium of Figure E2.1(d):

NCD+8kN+4kN−5kN= 0

NAB =−8kN−4kN+5kN=−7kN (compression)

The normal force should be in the opposite direction of the assumed NCD.
The normal stress between C and D (Equation (2.1)):

�CD = NCD

A
= −7kN

0�0001m2
=−7×104 kN/m2 =−70MPa

The elongation between C and D (Equation (2.5)):

�CD = NCDLCD
EA

= −7kN×1�0m

140×106 kN/m2×0�0001m2
=−500×10−6 m

The total change in length of the bar is:

�Total = �AB+�BC+�CD = 178�57×10−6 m−160�71×10−6 m−500×10−6 m

=−482�14×10−6 m=−0�482mm

The negative sign means the change in length is contraction.

EXAMPLE 2.2
The concrete pier shown in Figure E2.2 supports a uniform pressure of 20 kN/m2at the
top. The density of the concrete is 25 kN/m3 and the pier is 0.5m thick. Calculate the
reaction force at the base and the stress at a level of 1m above the base.

P

W

N

(a)

(b)
m

W
1 m

1 m

m

R

0.5 m

1.5 m

Figure E2.2

[Solution] This is a statically determinate structure subjected to only vertical loads. The vertical
reaction at the base can be determined from vertical equilibrium. The method of section can be
used to calculate the stress on section m–m.

From the equilibrium in the vertical direction, the reaction R must be equal to the sum of the
weight and the resultant of the pressure.
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Weight of the pier:

W = �0�5+1�5�×2
2

×0�5×25= 25kN

Resultant of the pressure:

P = 0�5×0�5×20= 5kN

Thus, the reaction at base:

R =W +P = 30kN

Cut at m–m and take the upper part of the pier as a free body (Figure E2.2(b)). Forces from the
part above the cut:

P+W = 5+ �0�5+1�×1
2

×0�5×25= 14�4kN

From the vertical equilibrium of Figure E2.2(b):

N = P+W = 14�4kN

Thus, the stress at this level is:

� = N

A
= 14�4kN

1�5m×0�5m
= 19�2kN/m2 (compression)

EXAMPLE 2.3
A bar made of steel and brass has the dimensions shown in Figure E2.3. The bar is rigidly
fixed at both ends. Calculate the end reactions and stresses when the force F is applied
at level C. Let Asteel = 2×104 mm2,Esteel = 200GPa,Abr = 1×104 mm2
 Ebr = 100GPa and
F = 1×103 kN.

D

brass

steel

a

aF

2a

A

B

C

Figure E2.3(a)

[Solution] This is a statically indeterminate system subjected to only vertical forces. The equi-
librium in the vertical direction must be first established. Due to the two fixed ends, the total
elongation of the bar is zero. This observation provides the additional equation in terms of the
two unknown reactions.



Axial tension and compression 27

R2

R1

F

Figure E2.3(b)

From the vertical equilibrium of Figure E2.3(b):

R1+R2− F = 0 (E2.3a)

Since the total deformation between A and D is zero:

�lAB+�lBC−�lCD = 0

where �lAB, �lBC and �lCD are the respective deformations between A and B, B and C, and C
and D. The negative sign before �lCD denotes compressive deformation between C and D. From
Equation (2.5):

�lAB =
R2×2a
EsteelAsteel




�lBC = R2a

EbrAbr



�lCD = R1a

EbrAbr

Thus:

R2×2a
EsteelAsteel

+ R2a

EbrAbr
− R1a

EbrAbr
= 0

or

2R2

200×109Pa×100×10−4 m2
+ R2−R1

100×109Pa×200×10−4 m2
= 0

or

3R2−R1 = 0 (E2.3b)

From Equations (E2.3a) and (E2.3b):

R1 =
3
4
F = 750kN R2 =

1
4
F = 250kN

Stresses in the bar:

Stress between A and B �AB =
R2

Asteel
= 250kN

100×10−4 m2
= 25MPa (tension)
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Stress between B and C �BC = R2

Abr
= 250kN

200×10−4 m2
= 12�5MPa (tension)

Stress between C and D �CD = R1

Abr
= 750kN

200×10−4 m2
= 37�5MPa (compression)

EXAMPLE 2.4
A rigid beam of 3a long is hinged at one end and supported by two steel wires as shown in
Figure E2.4. Wire 1 is 0.1mm short due to a manufacturing error and has to be stretched
so as to be connected to the beam. If the ratio between the cross-sectional areas of the
two wires, that is, and A1/A2, is 2 and the allowable stress of steel is 160MPa, calculate
the minimum cross-sectional areas of both wires. Esteel = 200GPa.

∆l 2

∆l 1 – 0.1

12 kN

F0 F1 F2

21

12 kN
a a a

21

(a)

(b)

1 m (c)

Figure E2.4

[Solution] This is a statically indeterminate structure. Apart from the equilibrium conditions, the
relationship between the elongation of wires 1 and 2 can be used as the compatibility condition.
Note that the beam can only rigidly rotate about the pin.

From the equilibrium of moment about the pinned end (Figure E2.4(b)):

F1a+2F2a−12×3a= 0 (E2.4a)

From the deformation shown in Figure E2.4(c):

�l2 = 2��l1−0�1�

where �l1 and �l2 represent, respectively, the elongation of wires 1 and 2. Thus, from
Equation (2.5):

�l1 =
F1l1

EsteelA1
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�l2 =
F2l2

EsteelA2

then

F2l2
EsteelA2

= 2
(

F1l1
EsteelA1

−0�1
)

or

F2×1×103

200A2
= 2

(
F1×999

2×200×A2
−0�1

)
(E2.4b)

In Equation (E2.4b) A1 is replaced by 2A2, and kN and mm are used as the basic units.
Solving Equations (E2.4a) and (E2.4b) simultaneously yields:

F1 = 12+0�0267A2

F2 = 12−0�0267A2

To meet the design requirement:

F1
A1

= 12+0�0267A2

A1
= 12+0�0267A2

2A2
≤ 160×10−3 kN/mm2 (E2.4c)

F2
A2

= 12−0�0267A2

A2
= 12−0�0133A2

A2
≤ 160×10−3 kN/mm2 (E2.4d)

From Equation (E2.4c):

A2 = 40�91mm2

From Equation (E2.4d):

A2 = 69�24mm2

To meet both requirements, A2 = 69�24mm2 and A1 = 2A2 = 138�48mm2 are the respective
minimum areas of the supporting wires.

EXAMPLE 2.5
A concrete cylinder of area Ac is reinforced concentrically with a steel bar of area Asteel.
The composite unit is L long and subjected to a uniform temperature change of �T .
Compute the thermal stresses in the concrete and steel. The thermal coefficients and
Young’s modulus of the concrete and steel are, respectively, �c and �steel and Ec and Esteel.

Figure E2.5
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[Solution] Due to the difference in the coefficients of thermal expansion, the incompatibility of
the longitudinal thermal deformation between concrete and steel will cause internal stresses in
both concrete and steel. When the concrete and steel work as a unit, the final expansion of
the cylinder, indicated by lfinal in Figure E2.5(a), is the result of both free thermal expansion,

lfreec and 
lfreesteel , and the deformation due to the stresses induced by the incompatibility 
Nc

and 
Nsteel
. For both concrete and steel, the relationships between these deformations need to

be established for the solution. Because this is a symmetric system, only half of the cylinder is
considered.

∆Nc

steel
∆N

free∆lc

free∆lsteel

lfinal

Figure E2.5(a)

(a) Thermal expansion of the concrete and steel if they are not bonded together
For the concrete, from Equation (2.9):

�lfreec = �c�T
L

2

For the steel:

�lfreesteel = �steel�T
L

2

(b) Deformation due to thermal stresses
Assume that the stresses on the cross-sections of both concrete and steel are uniform. The
resultants of these stresses in concrete and steel are, respectively, Nc and Nsteel. Thus the
deformation due to these forces are as follows:

For the concrete:

�Nc
= NcL/2

EcAc

For the steel:

�Nsteel
= NsteelL/2

EsteelAsteel
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(c) Geometric relation between the above deformations
From Figure E2.5(a):

�Nc
+�Nsteel

= �lfreesteel−�lfreec

or

NcL/2
EcAc

+ NsteelL/2
EsteelAsteel

= �steel�T
L

2
−�c�T

L

2
= ��steel−�c��T

L

2

From the equilibrium of the composite cylinder:

Nc = Nsteel

Thus:

Nc = Nsteel =
EsteelAsteelEcAc

EsteelAsteel+EcAc
��Steel−�C��T

The stresses in the concrete and steel are therefore:

�c =
Nc

Ac
= EsteelAsteelEc

EsteelAsteel+EcAc
��Steel−�C��T

�steel =
Nsteel

Asteel
= EsteelEcAc

EsteelAsteel+EcAc
��Steel−�C��T

2.12 Conceptual questions

1. Explain the terms ‘stress’ and ‘strain’ as applied to a bar in tension. What is the relationship
between the two quantities?

2. What is meant by ‘elastic material’? Define Modulus of elasticity.
3. Why does the axial stress vary along an axially loaded bar of variable section?
4. Consider the stresses in an axially loaded member. Which of the following statements are

correct?

(a) On the section where the maximum tensile stress occurs, shear stress vanishes.
(b) On the section where the maximum tensile stress occurs, shear stress exists.
(c) On the section where the maximum shear stress occurs, normal stress vanishes.
(d) On the section where the maximum shear stress occurs, normal stress may exist.

5. A section subjected to maximum axial force is the section that will fail first. Is this correct,
and why?

6. Two bars that are geometrically identical are subjected to the same axial loads. The bars
are made of steel and timber, respectively. Which of the following statements is correct?
The bars have

(a) the same stresses and strains;
(b) different stresses and strains;
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(c) the same stresses but different strains;
(d) the same strains but different stresses.

7. Which following statements are correct about elastic modulus E?

(a) E represents the capacity of a material’s resistance to deformation.
(b) E is a material constant and is independent of stress level in a material.
(c) E depends on cross-sectional area when a member is in tension.
(d) E depends on the magnitude and direction of the applied load.

8. What is your understanding of Saint-Venant’s principle? And what is the importance of
the principle in relation to static stress analysis?

9. Two identical bars are subjected to axial tension as shown in Figure Q2.9. If the normal
stress on the cross-section at the middle of both bars are the same,

(a) what is the relationship between the concentrated force P and the uniformly distrib-
uted end pressure p?

(b) is the distribution of normal stress on the sections near the ends of the bars the same
as the distribution on the midsection and why?

pp

P P

Figure Q2.9

10. What is meant by ‘stress concentration’? Which of the bars shown in Figure Q2.10 is more
sensitive to stress concentration?

Figure Q2.10

11. Three bars are made of the same material and the shapes of their cross-section are,
respectively, solid square, solid circle and hollow circle. If the bars are subjected to the
same axial force, which of the following statements is correct?

(a) To achieve the same level of stiffness, the square section uses less material.
(b) To achieve the same level of stiffness, the circular section uses less material.
(c) To achieve the same level of stiffness, the hollow circular section uses less material.
(d) Toachieve thesame levelof stiffness, the three sectionsuse thesameamountofmaterial.
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12. The symmetric space truss consists of four members of equal length (Figure Q2.12). The
relationship between the axial stiffness of the members is E1A1 > E2A2 > E3A3 > E4A4. If
a vertical force F is applied at the joint of the four members, in which member does the
maximum axial force occur and why?

4

3

2
1

Figure Q2.12

13. The following members are subjected to a uniform change in temperature. In which
members will the temperature change cause stresses in the axial direction?

Material 1

Material 1

Material 2

Material 2 

Figure Q2.13

2.13 Mini test

Problem 2.1: The four bars shown in the figure are made of different materials and have an
identical cross-sectional area A. Can the normal stresses on the sections in middle span be
calculated by P/A, and why?

PSteel Concrete

P P
P

Timber

P P

Concrete

P P

Steel

Figure P2.1
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Problem 2.2: The bar with variable section is subjected to an axial force P as shown in
Figure P2.2.

P

l1

P

l2

Figure P2.2

The total elongation, the strain and the total strain energy of the bar are calculated as follows:

Total elongation �l = �l1+�l2 =
2Pl1
EA1

+ Pl2
EA2

Strain �= �l1
l1

+ �l2
l2

Total strain energy U = U1+U2 =
2P2l1
2EA1

+ P2l2
2EA2

Are the calculations correct, and why?

Problem 2.3: A force of 500 kN is applied at joint B to the pin-joined truss as shown in
Figure P2.3. Determine the required cross-sectional area of the members if the allowable stresses
are 100MPa in tension and 70MPa in compression.

500 kN
4

3

3 m3 m

45°

1.5 m
B

Figure P2.3

Problem 2.4: The members of the pin-joined truss shown in Figure P2.4 have the same tensional
stiffness EA. Determine the axial forces developed in the threemembers due to the applied force P.

P

L

β

β

Figure P2.4
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Problem 2.5: A weight of 30 kN is supported by a short concrete column of square section
250mm×250mm. The column is strengthened by four steel bars in the corners of total cross-
sectional area 6×103 mm2. If the modulus of elasticity for steel is 15 times that for concrete,
find the stresses in the steel and the concrete.

250 mm

250 mm

Figure P2.5

If the stress in the concrete must not exceed 400 kN/m2, what area of steel is required in
order that the column may support a load of 60 kN?



3 Torsion

Torsion is another basic type of deformation of a structural member that is subjected to a twist
action of applied forces, as shown by the cantilever shaft subjected to a torque at the free
end (Figure 3.1). If the shaft is long and has a circular section, its torsion and deformation are
characterized by the following:

T

L

θ 

Figure 3.1

• The torque or twist moment is applied within a plane perpendicular to the axis of the
circular member.

• Under the action of the torque, shear stress develops on the cross-sections.
• Under the action of the torque, the deformation of the bar is dominated by angle of

twist, i.e., the relative rotation between parallel planes perpendicular to the axis.
• A plane section perpendicular to the axis remains plane after the twist moment is

applied, i.e., no warpage or distortion of parallel planes normal to the axis of a member
occurs.

• In a circular member subjected to torsion, both shear stresses and shear strains vary
linearly from the central axis.

3.1 Sign convention

A positive torque is a moment that acts on the cross-section in a right-hand-rule sense about
the outer normal to the cross-section (Figure 3.2). Consequently, a positive angle of twist is a
rotation of the cross-section in a right-hand-rule sense about the outer normal. As defined from
the sign convention for the normal forces in Chapter 2, the sign convention defined here is
again not related to a particular direction of coordinates.
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T

L

θ

Figure 3.2

3.2 Shear stress

Stresses that are developed on a cross-section due to torsion are parallel to the section and,
therefore, are shear stresses. In a circular member subjected to a torque, shear strain, �, varies
linearly from zero at the central axis. By Hooke’s law (Equation (1.5)), the shear stress, � , is
proportional to shear strain, that is:

� = G� (3.1)

where G denotes shear modulus of material.
On a cross-section, shear stress also varies linearly from the central axis (Figure 3.3):

� = Tr

J
(3.2)

where

T – torque acting on the section
r – radial distance from the centre
J – polar moment of inertia or polar second moment of area, representing a geometric

quantity of the cross-section and having a unit of, for example, m4. The mathematical
expression of J is:

J =
∫
area

r2dA�rea� (3.3)

ττ

(a) (b) 

Figure 3.3
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γ θ
o

L

T
T

Figure 3.4

For the tubular section shown in Figure 3.3(b):

J = �

32
�D4

out−D4
in� (3.4a)

where Dout and Din are, respectively, the outside and inside diameters of the section. For the
solid section shown in Figure 3.3(a), the inner diameter (Din) equals zero, that is:

J = �

32
D4

out (3.4b)

3.3 Angle of twist

Angle of twist is the angle difference between two parallel sections of a bar subjected to torsion.
It is proportional to the applied torsion, T , and the distance between the two sections, L, while
inversely proportional to the geometric quantity of cross-section, J, and the shear modulus, G,
where GJ is called torsional rigidity. Thus for the bar shown in Figure 3.4:

� = TL

GJ
(3.5)

If the changes in twist moment, cross-sectional geometry and shear modulus along the central
axis between sections are discrete, the total angle of twist is:

� =
N∑
i=1

TiLi
GiJi

(3.6)

where N is the total number of the discrete segments (i = 1
2
 � � � 
N), within each of which Ti ,
Gi and Ji are all constant.

If the changes are continuous for T , J and G within length L:

� =
∫ L

0

T�x�

G�x�J�x�
dx (3.7)

3.4 Torsion of rotating shafts

Members as rotation shafts for transmitting power are usually subjected to torque. The following
formula is used for the conversion of kilowatts (kW), a common unit used in the industry, into
torque applied on a shaft:

T = 159
p

f
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or

T = 9540
p

N
(3.8)

Where

T = torque in N m
p= transmitted power in kW
f = frequency of rotating shaft in Hz
N = revolutions per minutes of rotating shaft (rpm).

3.5 Key points review

• If a shaft is long and the loads applied are twist moments/torques about the longit-
udinal axis, the deformation can be defined by the angle of twist.

• The internal stresses and forces on internal cross-sections perpendicular to the axis are
shear stresses and torques, respectively.

• The resultant of the shear stresses on any cross-section along the shaft is the torque
acting on the same section.

• The polar second moment of area and the shear modulus represent, respectively, the
geometric and material contributions of the shaft to the torsional stiffness.

• The torsional stiffness of a section is GJ, which defines torsional resistance of a member.
• Shear stress is proportional to shear strain and varies linearly from the central axis.
• On a cross-section, maximum shear stress always occurs at a point along the outside

boundary of a section.
• Equations (3.2)–(3.7) do not apply for noncircular members, for which cross-sections

perpendicular to the axis warp when a torque is applied.

3.6 Recommended procedure of solution

NoYes

Replace supports with
reaction torques

Statically determinate?

Calculate the reactions
from equilibrium equations

by taking moment about the
central axis

Establish equilibrium equations
in terms of the reactions

Establish additional equations from
compatibility of angle of twist and

solve for reactions

Determine internal
twist moment using

the method of section

Calculate shear stresses and angle of twist
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3.7 Examples

EXAMPLE 3.1
The solid shaft shown in Figure E3.1(a) is subjected to two concentrated torques, respect-
ively, at A and B. The diameter of the shaft changes from 1m to 0.5m at B. What is the
total angle of twist at locations A and B and what is the maximum shear stress within the
shaft? E = 200GPa and 	 = 0�25.

[Solution] This is a statically determinate system subjected to only twist moments. The reaction
torque at the built-in end can be determined from the equilibrium of moment. The method of
section can be used to calculate the torques on the sections between A and B and B and C. The
stresses on these sections can then be calculated by Equation (3.2). Because the shaft is under a
discrete variation of torques and geometrical dimension, Equation (3.6) is used to calculate the
angle of twist.

L1 = 5 m

TB = 3 MNm

A
B

C

L2 = 4 m

Figure E3.1(a)

Tc

TB

TA

Figure E3.1(b)

From the equilibrium of Figure E3.1(b):

Tc−TA−TB = 0

Tc = TA+TB = 5MNm

By taking sections between A and B, and B and C (see Figure E3.1(b)), the twist moment diagram
is drawn in Figure E3.1(c). Following the right-hand rule, the twist moments on the sections
along the axis are defined as positive.
Total angle of twist:

Since GAB = GBC = G= E

2�1+	�
= 200

2�1+0�25�
= 80GPa

JAB =
�

32
�0�5�4 = �

512
m4
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+

5 MNm 

2 MNm 

(c)

Figure E3.1(c)

JBC = �

32
�1�4 = �

32
m4

From Equation (3.6), the angle of twist at A is:

�A = ∑
i=1
2

TiLi
GiJi

= TABLAB
GABJAB

+ TBCLBC
GBCJBC

= 2×4
80×103�/512

+ 5×5
80×103�/32

= 19�48×10−3�rad�

The angle of twist at B is:

�B =
TBCLBC
GBCJBC

= 5×5
80×103�/32

= 3�18×10−3�rad�

Maximum shear stress
The maximum shear stresses within AB and BC are needed for the overall maximum.

From Equation (3.2):

�max
AB = TABrmax

JAB
= 2× �0�5/2�

�/512
= 81�49MPa

�max
BC = TBCrmax

JBC
= 5× �1/2�

�/32
= 25�46MPa

Thus, the maximum shear stress occurs between A and B.

EXAMPLE 3.2
A motor drives a circular shaft through a set of gears at 630 rpm; 20 kW are delivered to
a machine on the right and 60 kW on the left (Figure E3.2). If the allowable shear stress
of the shaft is 37MPa, determine the minimum diameter of the shaft.

Motor60 kW
20 kW 

9 m1.5 m

A B C

Figure E3.2
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[Solution] The torsion problem is statically determinate. The torques acting on the shaft have to
be calculated first by Equation (3.8). The shaft is then analyzed by Equation (3.2) to determine
the maximum shear stress that depends on the diameter. A comparison of the maximum shear
stress with the allowable stress of the material leads to the solution of the minimum diameter.

Since the total power transmitted to the shaft through gear B is 80 kW (60+20):

TB = 9540
p

N
= 9540× 80

630
= 1211�43N m

The resistance torques at A and C are, respectively:

TA = 9540
p

N
= 9540× 20

630
= 302�86N m

TC = 9540
p

N
= 9540× 60

630
= 908�57N m

The twist moment diagram of the shaft is shown below:

TA TB
TC

A B C

302.86

908.57

Because the shaft has a constant diameter, it is obvious that the maximum twist moment, then
the maximum shear stress, occurs between B and C. By Equation (3.2):

�max =
TmaxD/2

J

= 908�57�N m�×D/2
�D4/32

≤ �allowable = 37×106 N/m2

D ≥5×10−2m= 50mm

Thus, the diameter of the shaft must not be smaller than 50mm.

EXAMPLE 3.3
A uniform steel pile of circular section, which has been driven to a depth of L in clay, carries
an applied torque T at the top. This load is resisted entirely by the moment of friction mf

along the pile, which is linearly distributed along the depth as shown in Figure E3.3(a). If
L= 60m, the diameter of the pile D = 100mm, T = 4kN m, shear modulus G = 80GPa
and the allowable shear stress of material �allowable = 40MPa. Check the safety of the pile
and determine the total angle of twist.



Torsion 43

mf = ky

y

Lmf

mf

T

Figure E3.3(a)

[Solution] This is a statically determinate system. From the equilibrium requirement, the applied
torque must be equal to the resultant torque due to the moment of friction, from which the
constant k can be determined. The method of section can be used to find the torque on an
arbitrary section and then draw the diagram of torque along the axis of the pile. The units used
in the following calculation are m and N.

From the equilibrium of the pile, the resultant of mf must equal the applied torque T . Thus,
from Figure E3.3(a):

T = Area of the triangle= 60×60k
2

= 4000N m

k = 4000×2
60×60

= 2�22N m/m

Take a cut at y (Figure E3.3(b)) and consider equilibrium of the low segment.

2
ky 

2

= 1.11y 
2

y

y

T(y)

T(y)

T(y) =
mf

Figure E3.3(b)

T�y�= ky× y

2
= 1�11y2

The maximum torque occurs on the section at y = 60m, that is, the section in level with the
ground surface:
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�max =
T�L�×D/2

J
= 4×103×50×10−3

�
32 ×1004×10−12

= 20�37MPa< 40MPa

The design of the pile is satisfactory. Since the pile is subjected to the continuously distributed
twist moment shown in Figure E3.3(b), from Equation (3.7):

�total =
∫ L

0

T�y�

G�y�J�y�
dy =

∫ L

0

ky2/2
GJ

dy = k

2GJ

∫ L

0
y2dy

= kL3

6GJ

= 1�11×603

6×80×109× �
32 ×1004×10−12

= 0�051 �rad�= 2�920

EXAMPLE 3.4
A bar of length 4m shown in Figure E3.4(a) has a circular hollow cross-section with an
outside diameter Dout of 50mm and is rigidly built in at each end. It carries torques of 0.9
and 1.5 kN m at the mid-span and three-quarter span sections, respectively, taken from
the left-hand end. If both torques are applied in the same direction and the maximum
shear stress in the bar is limited to 100N/mm2, calculate the maximum allowable internal
diameter Din of the bar.

[Solution] This is a statically indeterminate structure and hence the reaction torques on the
cross-sections at A and D cannot be uniquely determined by considering the equilibrium of
the system. Thus a compatibility requirement must be considered, for example, by replacing
the support at D with a twist moment TD (Figure 3.4(a)). Under the action of the three twist
moments, the angle of twist of section D must be zero (fixed end condition). After the end
moment at D is found, the system is equivalent to a statically determinate system. The procedure
shown in previous examples can then be followed to determine the final solution.

A
1B D

2 m

TA B C

C

TD

Figure E3.4(a)

Assume that the reaction torques acting on the cross-sections at A and D are, respectively, TA
and TD. From the equilibrium of the bar:

TA+TD−TB−TC = 0

TA+TD = TB+TC = 2�4kN m
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Now consider the angle of twist at D under the combined action of TB, Tc and TD, i.e., as shown
in Figure E3.4(b):

A
B C D

Figure E3.4(b)

as a superimposition of the angle of twist caused by the action of these torques individually, as
shown in Figures E3.4(c), (d) and (e), respectively.

From Figure E3.4(c) and Equation (3.5):

A
B

TB

Figure E3.4(c)

��D��c� = �B =
TBLAB
GJ

From Figure E3.4(d) and Equation (3.5):

A
C

TC

Figure E3.4(d)

��D��d� = �C = TCLAC
GJ

And from Figure E3.4(e) and Equation (3.5):

A TD

Figure E3.4(e)

��D��e� =
TDLAD
GJ

The compatibility condition requires:

��D��c�+ ��D��d�− ��D��e� = 0
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Thus:

TBLAB
GJ

+ TCLAC
GJ

− TDLAD
GJ

= 0

0�9×2+1�5×3−TD×4= 0

TD = 1�57kN m

From the equilibrium:

TA = 2�4−TD = 2�4−1�575= 0�825kN m

From the twist moment diagram shown in Figure E3.4(f), the maximum twist moment occurs
between C and D, where the design requirement must be met.

0.075

0.825 

–

+

1.57

Figure E3.4(f)

Now from Equation (3.2):

� = Tr

J
= 1�575×106×Do/2

��D4
out−D4

in�/32

Thus, for the minimum internal diameter:

1�575×106×Dout/2

��D4
out−D4

in�/32
≤ 100

Din = 38�7mm

The internal diameter of the shaft must not be larger than 38.7mm.

EXAMPLE 3.5
A tube of aluminium with a solid core of steel on the inside is shown in Figure E3.5.
The member is subjected to a torque T . The shear moduli for aluminium and steel are,
respectively, Ga and Gsteel. What are the maximum shear stresses in the aluminium and
the steel?

[Solution] This is also a statically indeterminate problem. Due to the composite section, the shear
stress distribution over the steel and aluminium areas has to be considered separately. Apart
from the equilibrium condition, the compatibility of deformation condition is that the angle of
twist has the same value for both the steel and the aluminium.
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Steel

T

D

d

aluminiumaluminium

Figure E3.5

Assume that the twist moments carried by the steel and the aluminium are, respectively, Tsteel
and Ta. Thus, from equilibrium:

Ta+Tsteel = T

Since the steel and the aluminium have the same angle of twist, from Equation (3.5):

TsteelL

GsteelJsteel
= TaL

GaJa

From the above two equations:

Ta =
GaJa

GaJa+GsteelJsteel
T

Tsteel =
GsteelJsteel

GaJa+GsteelJsteel
T

Then, the maximum shear stresses in the steel and the aluminium are, respectively:

�max
a = Ta×D/2

Ja
= TGaD

2�GaJa+GsteelJsteel�

�max
steel =

Tsteel×d/2
Jsteel

= TGsteeld

2�GaJa+GsteelJsteel�

EXAMPLE 3.6
A hollow steel shaft with an internal diameter of d = 8 in� and an outside diameter of
D= 12 in� is to be replaced by a solid alloy shaft. If the maximum shear stress has the same
value in both shafts, calculate the diameter of the latter and the ratio of the torsional
rigidities GJ ·Gsteel = 2�4Galloy.

[Solution] Because the maximum shear stress must be the same in both shafts under the same
torque, from Equation (3.2), �rmax/J�steel must be equal to �rmax/J�alloy.
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Thus:

Dsteel/2
Jsteel

= Dalloy/2

Jalloy
(i)

For the shafts:

Jsteel =
�

32
�124−84�= 520� in�4

Jalloy =
�

32
D4

alloy

From (i):

6
520�

= Dalloy/2
�
32D

4
alloy

Hence, D3
alloy = 1386 in�3 and Dalloy = 11�15 in�

Ratio of torsional rigidity:

GsteelJsteel
GalloyJalloy

= Gsteel

Galloy
× Dsteel

Dalloy
�from �i��

= 2�4× 12
11�15

= 2�58

That is, the torsional rigidity of the steel is 2.58 times that of the alloy shaft. This ratio means
that, though replacing the steel shaft by the alloy one meets the strength requirement, the
angle of twist of the alloy shaft will be 2.58 times larger than that of the steel.

EXAMPLE 3.7
When a bar of rectangular section is under torsion (Figure E3.7), determine the shear
stresses at the corners of the cross-section.

[Solution] This question tests your conceptual understanding of shear stresses. They always
appear in pair on planes that are perpendicular to each other. They are equal in magnitude, but
in an opposite sense.

Figure E3.7

Take an infinitesimal element around a corner point and assume that on the plane of the
cross-section there are two shear stresses perpendicular to either the horizontal or the vertical
boundary. The two assumed shear stresses must be equal to the shear stresses acting on the
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top and the left-hand-side surfaces. Since the bar has a stress-free surface, the surface shear
stresses are zero (Section 1.4.2). Consequently, the two assumed shear stresses at the corner of
the cross-section are also zero.

3.8 Conceptual questions

1. Explain the terms ‘shear stress’ and ‘shear strain’ as applied to the cross-section of a long
shaft subjected to torsion.

2. Explain the terms ‘torsional rigidity’ and ‘polar moment of inertia’.
3. Explain why Equations (3.2)–(3.7) can only apply for circular members.
4. Which of the following structures is under torsion?

mm

P

P
P P

(a) (b) (c)

Figure Q3.4

5. When a circular cross-section is under pure torsion, why does the direction of the shear
stress along the circular boundary always coincide with the tangent of the boundary?

6. When a twist moment is applied at a location along the axis of a bar, is it right to say
that the twist moment on the cross-section at the same location is equal to the external
applied moment and why?

7. The twist moment diagrams for a shaft subjected to torsion are shown in Figure Q3.7.
Determine the magnitude, direction and location of the externally applied moments for
each case.

3 kN m 4 kN m 

2 kN m 3 kN m

1 kN
+

Figure Q3.7

8. The tube sections below have the same outside radius and are subjected to the same twist
moment.

(a) (b)

Figure Q3.8
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Which of the following statements are correct and why?

(a) The maximum shear stresses are the same on both sections.
(b) The maximum shear stress of (a) is greater than that of (b).
(c) The maximum shear stress of (b) is greater than that of (a).
(d) The minimum shear stress of (b) is greater than that of (a).

9. Under torsion, the small square in Figure Q3.9 will change to

                             

Figure Q3.9

(a) a larger square
(b) a rectangle
(c) a diamond
(d) a parallelogram.

10. Brittle materials normally fail at maximum tension. If the shaft shown in Figure Q3.10 is
made of iron and subjected to pure torsion, which of the following statements is correct?

3

4 4

2 1

1 2 3

Figure Q3.10

(a) The shaft is likely to fail along section 1-1.
(b) The shaft is likely to fail along section 2-2.
(c) The shaft is likely to fail along section 3-3.
(d) The shaft is likely to fail along section 4-4.

11. A solid circular section of a diameter D can carry a maximum torque T . If the circular area
of the cross-section is doubled, what is the maximum torque that the new section can
carry?

(a)
√
2T

(b) 2
√
2T

(c) 2T
(d) 4T
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12. A solid circular section has the same area as a hollow circular section. Which section has
higher strength and stiffness, and why?

13. A solid circular shaft of steel and a solid circular shaft of aluminium are subjected to the
same torque. If both shafts have the same angle of twist per unit length (�/L), which one
of the following relationships will the maximum shear stresses in the shafts satisfy?

(a) �steel < �aluminium

(b) �steel > �aluminium

(c) �steel = �aluminium

(d) All of the above are possible.

3.9 Mini test

Problem 3.1: The twist moment diagrams are shown below for a shaft subjected to torsion.
Determine the magnitude, direction and location of the externally applied moments for
each case.

+ +

3 kN m3 kN m

1 kN m

2 kN m

2 kN m

Figure P.3.1

Problem 3.2: Two geometrically identical shafts are loaded with the same twist moments.
If the two shafts are made of different materials, which of the following statements is
correct.

(a) Both the maximum shear stresses and the angles of twist are the same.
(b) Both the maximum shear stresses and the angles of twist are different.
(c) The maximum shear stresses are the same, but the angles of twist are different.
(d) The maximum shear stresses are different, but the angles of twist are the same.

Problem 3.3: A hollow circular section is subjected to torsion. Which of the following stress
distributions is correct?

(a) (b) (c) (d)

Figure P3.3
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Problem 3.4: Calculate the minimum diameters of two shafts transmitting 200 kW each
without exceeding the allowable shear stress of 70MPa. One of the shafts rotates at 20 rpm
and the other at 20 000 rpm. What conclusion can you make from the relationship between the
stresses and the speed of the shafts?

Problem 3.5: Consider the stepped shaft shown in Figure P3.5. The shaft is fixed at both ends.
Assuming that a, d, G and T are all given constants, determine the maximum shear stress and
the angle of twist at B.

2d 3d

2a 2a a a

T 4Td

B

Figure P3.5
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Figure 4.1(a) shows a car crossing a bridge. The purpose of the bridge deck is to transfer the
weight of the car to the two supports. Figure 4.1(b) is an equivalent illustration of Figure 4.1(a),
showing the transversely applied load (the car), the structure (the deck) and the supports at the
ends. In fact, in many engineering applications, structural members resist forces (loads) applied
laterally or transversely to their axis. This type of member is termed a beam. The deformation
of a beam is characterized as follows:

• The external load is applied transversely and causes the beam to flex as shown in
Figure 4.1(c).

• Bending moment and shear force develop on cross-sections of the beam as shown in
Figure 4.1(d).

• Under the action of the bending moment and shear force, the deformation of the
beam is dominated by transverse deflection and a rotation of cross-section.

• Axial deformation of the beam is neglected.

(b)

(c)

(d)

(a)

1

1

Figure 4.1
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(b) 

(a) 

(c) 

Figure 4.2

4.1 Definition of beam

A beam is defined as a structural member designed primarily to support forces acting perpendic-
ular to the axis of the member (Figure 4.2). The major difference between beams (Figure 4.2(a))
and axially loaded bars (Figure 4.2(b) or shafts in torsion (Figure 4.2(c)) is in the direction of the
applied loads.

4.2 Shear force and bending moment

A shear force is an internal force that is parallel to the section it is acting on and that, for
example, in Figure 4.1(d), resists the vertical effect of the applied loads on the beam. The shear
force is numerically equal to the algebraic sum of all the vertical forces acting on the free body
taken from either sides of the section. Shear forces are measured in N, kN, etc.

A bending moment is an internal force that resists the effect of moments caused by external
loads, including support reactions. Bending moments are measured in N m, kN m, etc.

4.3 Beam supports

A beam may be supported differently. Table 4.1 shows the most common types of supports
that are frequently used to model practical structural supports in design.

4.4 Sign convention

The following sign convention is adopted for bending analysis of beams in most textbooks. The
convention is again not in relation to a particular coordinate direction.

4.4.1 Definition of positive shear

A downward shear force acting on the cross-section of the left-hand-side free body of a cut, or
an upward shear force acting on the cross-section of the right-hand-side free body of the cut, is
defined as a positive shear force (Figure 4.3(a)). Positive shear forces are shown in Figure 4.3(b)
for a segment isolated from a beam by two sections (cuts).
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Table 4.1 Beam supports and reactions

Type of support Simple
illustration

Reaction forces and displacements at the support

Roller
or

(1) Shear force 

(1) Axial displacement
(usually ignored∗)

(2) Rotation

Pinned

(1) Shear force 
(2) Axial force (usually
      ignored*)

(1) Rotation

Fixed

(1) Shear force 
(2) Axial force (usually 
      ignored*) 
(3) Bending moment 

None

Free None (1) Axial displacement
(usually ignored∗)

(2) Vertical displacement
(3) Rotation

∗ Axial force/displacement is significantly smaller than other types of forces/displacements in bending.

(a) 

(b) 

Arbitrary
section

Positive shear

Beam segment

Figure 4.3

The shear forces shown in Figure 4.3(b) tend to push up the left-hand side of the beam
segment. The positive shear forces can also be described as left up shear forces.

4.4.2 Definition of positive bending moment

A positive bending moment (Figure 4.4(a)) produces compression in the upper part and tension
in the lower part of a beam’s cross-section. The deformed beam takes a shape that can retain
water.

From Figure 4.4(b), a positive bending moment can also be described as sagging moment
since the moment induces a sagging deflection.
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+
Arbitrary
section

Positive bending
moment

(a)

(b) 

Figure 4.4

4.5 Relationships between bending moment, shear force and applied load

On the arbitrary cross-section shown in Figure 4.5, the interrelation of the bending moment
M�x�, shear force V�x� and the intensity of the distributed load q�x� always obey the following
relationships.

(i) The change rate of shear force along a beam is equal to the distributed load:

dV�x�

dx
=−q�x� (4.1)

(ii) The change rate of bending moment along a beam is equal to the shear force:

dM�x�

dx
= V�x� (4.2)

(iii) The combination of Equations (4.1) and (4.2) yields:

d2M�x�

dx2
=−q�x� (4.3)

The above relationships are applicable at all cross-sections of a beam except where there is a
concentrated force or moment.

V

q (x)

Arbitrary
section

(a) (b)

M

x

Figure 4.5
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4.6 Shear force and bending moment diagrams

The shear force and bending moment diagrams indicate, respectively, the internal shear force
and bending moment distribution on the cross-section along the length of a beam.

On the basis of the interrelations shown in Section 4.5, Table 4.2 shows some common
features exhibited in the shear force and bending moment diagrams of beams.

Table 4.2 Common features of shear and bending moment diagrams

Case (a) Case (b) Case (c) Case (d)

Load acting on a
segment of a
beam

P

P

M

M

Shear force V
dV

dx
=−q

Bending
moment M
d2M

dx2
=−q

or

Observation (i) Linearly
decreasing shear
force from left to
right (may change
from positive to
negative).
(ii) Bending
moment diagram is
similar to the shape
of a string under a
uniformly
distributed load,
that is, a parabola.

(i) Constant positive or
negative shear force.

(ii) Linearly increasing
or decreasing bending
moment, depending
on the loads acting on
other parts of the
beam.

(i) An abrupt drop
of shear force by P

when passing
through the section
where the point
load is applied.
(ii) Bending
moment diagram
showing the shape
of a string
subjected to a
point load.

(i) Continuous
distribution of
shear force across
the section where
the external
moment is applied.
(ii) An abrupt
increase of bending
moment by M

when passing
through the
section.

4.7 Key points review

• A beam is long in the axial direction compared to its other two dimensions.
• A beam is to support external load applied perpendicular to the axis.
• The two major internal forces are shear force and bending moment.
• The change in shear force is equal to applied distributed load.
• The change in bending moment is equal to shear force.
• A shear force diagram shows how shear force is distributed along the axis of a beam.
• A bending moment diagram shows how bending moment is distributed along the axis

of a beam.
• Continuous distribution of applied loads result in continuous variations of both shear

force and bending moment along a beam.
• On unloaded segments of a beam the shear force is constant.
• A uniformly distributed load causes a linear variation in shear force, and a parabolic

variation in bending moment.
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• A concentrated force/moment results in sudden drop or jump of shear force/bending
moment at the location where the force/moment is applied.

• A point force causes a kink in a bending moment diagram.
• A concentrated moment has no effect on a shear force diagram.
• There is no shear force at a free end of a beam.
• There is no bending moment at a free or simply supported end of a beam.
• An internal hinge can transmit a shear force.
• An internal hinge cannot transmit a bending moment.
• Bending moment reaches either maximum or minimum at a point of zero shear force.

4.8 Recommended procedure of solution

• Replace all supports of a beam by their associated reactions (see Table 4.1).
• Apply the static equilibrium equations to determine the reactions.
• Identify critical sections that characterize changes of pattern of the internal force

diagrams. The critical sections include the locations where (a) a concentrated force or
moment is applied; (b) a beam is supported; and (c) a distributed load starts or ends.

• Apply the method of section by taking cuts between each of the critical sections.
• Take either left or right part of the cut as a free body.
• Add the unknown shear force and bending moment on the cut of the free body.
• Consider static equilibrium of the free body and calculate the shear force and bending

moment on the cross-section (cut).
• Use Table 4.2 to draw the diagrams between the critical sections. If a moment distri-

bution is parabolic between two critical sections and exact distribution is required, at
least an additional cut must be taken between the two sections.

4.9 Examples

EXAMPLE 4.1
Draw the shear force and bending moment diagrams of the simply supported beam
shown in Figure E4.1.

4 kN 

2 kN
2 m 2 m 2 m 2 m 2 m

A B C D E F

5 kN/m 2 kN m 

Figure E4.1

[Solution] This is a determinate problem that can be solved by following the general procedure
described in Section 4.8.
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Step 1: Replace supports by reactions.

RA
RF

4 kN 

2 kN

5 kN/m 
2 kN m 

Since there is no external load applied horizontally, the horizontal support reaction at A vanishes.
Thus the pin at A is replaced by a single reaction RA in the vertical direction.

Step 2: Solution of the reactions.

Taking moments about A (
�

A):

∑
MA =10m×RB+2kN×4m+2kN m−4kN×8m−5kN/m×2m×1m= 0

RF = 3�2kN�↑�

Resolving vertically (↑):

RA+RF+2kN−4KN−5kN/m×2m= 0

RA = 8�8kN�↑�

Step 3: Identify critical sections.

Sections at A, B, C, D, E and F are all critical sections, where either application of concentrated
forces or change of load pattern occurs.

Step 4: Calculation of shear forces and bending moments on the critical sections.

(a) Section at A
At section A (the end section), RA acts as a positive shear force (left up), while there is no
bending moment. Thus:

RA

VA = RA = 8�8kN

MA = 0kN

(b) Section at B

5 kN/m

MB

VB
RA
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Resolving vertically:

RA−5kN/m×2m−VB = 0

VB =−1�2kN�↑�

The negative sign denotes that the actual direction of VB is opposite to the assumed
direction.

Taking moment about B (
�

B ):

MB+5kN/m×2m×1m−RA×2m= 0

MB = 7�6kN m
( )

In order to draw the parabolic distribution of the bending moment between A and B, an
additional section between A and B must be considered. Let us take the middle span of
AB.

5 kN/m

RA

VAB

MAB

Taking moment about the cut:

MAB+5kN/m×1m×0�5m−RA×1m= 0

MAB = 6�3kN m
( )

(c) Section at C
We can consider the section on the immediate left or right of the concentrated load applied
at C, that is, with or without including the load in the free body diagram. We take the
section on the left of the load at C in the following calculations.

2 m 2 m

B C

5 kN/m
VC

MC

RA

Resolving vertically:

RA−5kN/m×2m−VC = 0

VC =−1�2kN�↑�
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Taking moment about C (
�

C):

MC+5kN/m×2m×3m−RA×4m= 0

MC = 5�2kN m
( )

(d) Section at D
Once again, we can consider the section on either the immediate left or the immediate
right of the concentrated moment applied at D, that is, with or without including the
moment in the free body diagram. We take the section on the left of the moment at D in
the following calculations.

B C D

2 m 2 m 2 m

5 kN/m

RA

VD
MD

2 kN

Resolving vertically:

RA+2kN−5kN/m×2m−VD = 0

VD = 0�8kN�↓�

Taking moment about D (
�

D):

MD+5kN/m×2m×5m−2kN×2m−RA×6m= 0

MD = 6�8kN m
( )

(e) Section at E
We take the section on the left-hand side of the concentrated load applied at E.

B C D E

2 m 2 m 2 m

2 m

5 kN/m
2 kN m

RA

VE
ME2 kN

Resolving vertically:

RA+2kN−5kN/m×2m−VE = 0

VE = 0�8kN�↓�
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Taking moment about E (
�

E ):

ME+2kN m+5kN/m×2m×7m−2kN×4m−RA×8m= 0

ME = 6�4kN m
( )

(f) Section at F
5 kN/m

2 kN m

RA
RF

4 kN

2 kN

The only reaction at F is the vertically upward force RF that is the shear force on the section.
Thus:

VF = RF =−3�2kN

MF = 0

The shear force is negative by following the sign convention established in Section 4.4.1.

Step 5: Shear force and bending moment diagrams.

From Table 4.2, the shear force diagram between A and B is a straight line valued 8.8 kN at A
and −1�2kN at B, while the bending moment diagram between A and B is a parabola (Case (a)
in Table 4.2). We have known the values of the bending moment at three locations from A to
B, that is, at A, B and the middle point of AB. The accurate shape of the parabola can then be
drawn.

Between B and C (Case (b) in Table 4.2), the shear force is a constant that equals the
shear force at B (there is no concentrated force applied here), that is, VB = −1�2kN. The
bending moment diagram is a straight line valued 7.6 kNm at B and 5.2 kNm at C (there is no
concentrated moment applied at B). Since there are no concentrated force and moment applied
at B, both the shear force and the bending moment show no abrupt changes across B.

Between C and D (Case (b) in Table 4.2), the shear force is a constant valued 0.8 kN (from
VD = 0�8kN), while the bending moment varies linearly with a value of 6.8 kN m at D. Obviously
due to the concentrated force 2 kN applied at C, the shear force shows an abrupt jump in the
direction of the applied force when crossing C from the left-hand side of the force (Case (c) in
Table 4.2). Since there is no concentrated moment applied at C, the bending moment diagram
is continuous across section C.

Between D and E (Case (b) in Table 4.2), the shear force and bending moment are, respect-
ively, constant and linear. Since there is no concentrated load applied at D, the constant shear
between D and E is equal to the shear force between C and D, that is, 0.8 kN. The bending
moment at D has an abrupt jump of 2 kN m (Case (d) in Table 4.2) due to the concentrated
moment applied at D. The moment then varies linearly and is 6.4 kN m at E (ME = 6�4kN m).

Between E and F (Case (b) in Table 4.2), the shear force is constant with an abrupt drop
from 0.8 kN to −3�2kN at E due to the applied downward load of 4 kN (Case (c) in Table 4.2).
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The bending moment diagram is linear between E and F. Since there is no concentrated moment
applied at E, the bending moment continues across the section. The bending moment vanishes
as MF = 0 at the section supported by the roller pin.

On the basis of the calculations in Step 4 and the analysis in Step 5, the shear force and
bending moment diagrams of the beam are drawn below.

+

5 kN/m

8.8 kN

0.8 kN

1.2 kN

2 kN m

4.8 kN m
5.2 kN m

6.3 kN m
7.6 kN m 6.8 kN m 6.4 kN m

4 kN

2 kN

4 kN

3.2 kN

2 kN
RA

RF

The following are observations from the above diagrams:

(i) When shear force is a constant over a span of a beam, the bending moment over the same
span is a sloped straight line (see Equation (4.2)).

(ii) When shear force is a sloped straight line over a span of a beam, the bending moment
over the same span is a parabola (see Equation (4.2)).

(iii) At a point where shear force diagram passes through zero, the bending moment is either
maximum or minimum.

EXAMPLE 4.2
Draw the shear force and bending moment diagrams of the beam shown in Figure E4.2.
The beam has a pin joint at B.

q

aaa
D

A B C qa2

Figure E4.2
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[Solution] This is a statically determinate beam. The pin at B joints AB and BD. Thus the bending
moment is zero at B. From Table 4.2 and Example 4.9, we know that the shear force is constant
and the bending moment varies linearly from A to C since there is no external load applied within
this range. The shear force and the bending moment are, respectively, linear and parabolic
between C and D. An abrupt change of shear force occurs at C due to the concentrated support
reaction.

Step 1: Replace supports with reactions.

BA

RCRA

MA

q

D

C qa2

The horizontal reaction at A vanishes in this case since there is no external load applied hori-
zontally.

Step 2: Calculate support reactions.

Consider BD and take moment about B (
�

B ), noting that at B the bending moment is zero due
to the hinge.

D

CB

VB RC

q

qa2

−qa2+RCa−qa× �a+ a

2
�= 0

RC = 5qa2

2
�↑�

Considering AD and resolving vertically:

RA+RC−qa= 0

RA = qa−RC =−3qa
2

�↓�

Consider AB and take moment about B (
�

B ):

A B VB

RA

MA
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−RAa−MA = 0

MA =−RAa=−�−3qa
2

� a= 3qa2

2

( )

Step 3: Identify critical sections.
Sections at A, C and D are the critical sections.

Step 4: Calculate shear forces and bending moments on the critical sections.

(a) Section at A
From the calculation in Step 2:

RA

MA

VA = RA =−3qa
2

MA = 3qa2

2

(b) Section at C
Take the section on the left of the roller pin at C.

RA

MA

MC

VC

A B C

Resolving vertically:

RA−VC = 0

VC = RA =−3qa
2

�↑�

Taking moment about C (
�

C):

MC−MA−RA×2a= 0

MC =MA+2aRA = 3qa2

2
+2a× �−3qa

2
�=−3qa2

2

( )
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(c) Section at D

qa 

2

The section at D is a free end subjected to a concentrated moment. Thus:

VD = 0

MD =−qa2

Following the sign convention, the moment at D is defined as negative.

Step 5: Draw shear force and bending moment diagrams.
On the basis of the calculations in Step 4 and the discussion before Step 1, the shear force and
bending moment diagrams are drawn below.

qa

3qa / 2

3qa 

2
 / 2

3qa 

2
 / 2

RC = 5qa 

2
 / 2

BA
q

D

C
MA

RA RC

qa 

2

qa 

2

The following are observations from the above shear force and bending moment diagrams:

(i) The bending moment diagram is zero when passing through a pin joint.
(ii) A pin joint does not alternate the variation of shear force.
(iii) An abrupt change of shear force occurs on the section where an intermediate support is

applied.

EXAMPLE 4.3
The beam shown in Figure E4.3 is pinned to the wall at A. A vertical bracket BD is rigidly
fixed to the beam at B, and a tie ED is pinned to the wall at E and to the bracket at D.
The beam AC is subjected to a uniformly distributed load of 2 tons/ft and a concentrated
load of 8 tons at C. Draw the shear force and bending moment diagrams for the beam.
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E

D

C
BA

8 ton

2 ton/ft

8 ft

8 ft

6 ft

4 ft

Figure E4.3

[Solution] This is a statically determinate structure. The axial force in the tie can be resolved into
vertical and horizontal components acting at D. The two force components generate a vertical
force and a concentrated moment applied at the point B of the beam.

Step 1: Calculate force and moment at B and reaction forces.

D

C
A

B

RA
H

RA
V

F
H

F
V

D

D

Resolving vertically:

RV
A+ FVD −8ton−2tons/ft×12 ft= 0

Taking moment about A (
�

A):

FVD ×8 ft+ FHD ×2 ft−8 tons×12 ft−2 tons/ft×12 ft×6 ft= 0

Due to the fact that the resultant of FHD and FVD must be in line with DE:

FVD
FHD

= 6 ft
8 ft

= 3
4

or

FVD = 3
4
FHD

Considering the above three equations, we have:

FHD = 30 tons �←�

FVD = 22�5 tons �↑�
RV
A = 9�5 tons �↑�
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The horizontal reaction at A, RH
A, does not induce any shear or bending of the beam and is

not included in the following calculation. The horizontal force, FHD , at D induces a concentrated
moment applied at B. The moment caused by FHD is:

FHD ×2 ft= 30T ×2 ft= 60 tons� ft

Hence the beam is loaded as:

A B
C

2 tons / ft
8T

60 tons / ft

RA = 9.5 tons
V F    = 22.5 tons

V
D

Step 2: Calculate shear forces and bending moments on critical cross-sections.
The cross-sections at A , B and C are the critical sections.

(a) Section at A

MA = 0

VA = RV
A = 9�5 tons

(b) Section at B
Taking cut at the left-hand side of B:

RA = 9.5 tons
V

A B VB

MB
2 tons / ft

Resolving vertically:

RV
A−2 tons/ft×8 ft−VB = 0

VB = RV
A−2 ton/ft×8 ft=−6�5 tons �↑�

Taking moment about B (
�

B ):

−RV
A×8 ft+2 tons/ft×8 ft×4 ft+MB = 0

MB = RV
A×8 ft−2 tons/ft×8 ft×4 ft= 12 tons� ft

(c) Section at C

MC = 0 and

VC = 8 tons

Step 3: Draw the shear force and bending moment diagrams.
Due to the distributed load, the shear force diagrams between A and B, and B and C are both
sloping lines, while the bending moment diagrams are parabolas. At B, due to the concentrated
force and bending moment, abrupt changes occur in both diagrams.
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B
C

A
RA = 9.5 tons

V FD = 22.5 tons
V

FD = 226 tons
V

2 tons / ft

48 tons / ft

60 tons / ft

12 tons / ft
22.55 tons / ft

60 tons / ft

16 tons

8 tons
9.5 tons

6.5 tons

8T

EXAMPLE 4.4
The simply supported beam shown in Figure E4.4 is loaded with the triangularly distributed
pressure. Draw the shear force and bending moment diagrams of the beam.

10 kN/m 

C
B

A

2 m 2 m

Figure E4.4

[Solution] This is statically determinate beam subjected to linearly distributed load. From
Table 4.2, a uniformly distributed load produces a linear shear force and a parabolic bending
moment diagram. From the relationship shown in Equations (4.1) and (4.2), the shear force and
bending moment diagrams of this case are, respectively, parabolic and cubic.

Step 1: Calculate support reactions.

C

B
A

RA RC

10 kN/m
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Resolving vertically:

RA+RC = 2×
(
1
2
×2m×10kN/m

)
= 20kN

Taking moment about A (
�

A):

RC×4−20kN×2m= 0

RC = 10kN�↑�

Thus:

RA = 10kN�↑�

Step 2: Calculate shear forces and bending moments on critical sections.
Sections at A , B (change in distribution pattern) and C are the critical sections.

(a) Section at A (Pin):

VA = RA = 10kN�↑�
MA = 0

(b) Section at the immediate left of B:

MB

VBRA = 10 kN

Resolving vertically:

RA−VB−
1
2
×2m×10kN/m= 0

VB =
1
2
×2m×10kN/m−10kN= 0

Taking moment about B (
�

B ):

MB−RA×2m+ 1
2
×2m×10kN/m× 2

3
×2m= 0

MB = 13�33kN m
( )

(c) At C (Roller):

VC =−RC =−10kN�↑�
MC = 0
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Step 3: Draw the shear force and bending moment diagrams.
The shear force and bending moment diagrams between the critical sections can be sketched
as parabolas and cubes, respectively. If more accurate curves are required, shear forces and
bending moments on additional sections between each pair of the consecutive critical sections
are needed. For this purpose, it is appropriate to establish the general equations of shear force
and bending moment between these critical sections.

Between A and B: Take an arbitrary section between A and B, assume the distance from the
section to A is x and consider the equilibrium of the beam segment shown in the figure below.

x

RA = 10 kN

V(x)

M(x)

5x kN/M

Resolving vertically:

RA−
1
2
× x×5x−V�x�= 0

V�x�= 10− 5
2
x2�kN��↓� �0≤ x ≤ 2m�

Taking moment about the arbitrary section (
�+):

M�x�−RA× x+ 1
2
× x×5x× 1

3
× x = 0

M�x�= 10x− 5
6
x3 �0≤ x ≤ 2m�

Between B and C: Take an arbitrary section between B and C, assume the distance from the
section to C is x and consider the equilibrium of the beam segment shown in the following
figure.

x

RC = 10 kNV(x)

M(x)
5x kN/M

Resolving vertically:

V�x�+RC−
1
2
× x×5x = 0

V�x�=−10+ 5
2
x2�kN� �0≤ x ≤ 2m�
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Taking moment about the arbitrary section:

M�x�−RC × x+ 1
2
× x×5x× 1

3
× x = 0

M�x�= 10x− 5
6
x3 �0≤ x ≤ 2m�

The shear forces and bending moments on an arbitrary section can be calculated by introducing
the x coordinate into the general equation derived above. For example,

At x = 1m from A between A and B:

V�x�= 10− 5
2
x2 = 10− 5

2
×12 = 7�5�kN��↓�

M�x�= 10x− 5
6
x3 = 10×1− 5

6
×13 = 9�17kN m

( )

At x = 1�2m from C between B and C:

V�x�=−10+ 5
2
x2 =−10+ 5

2
×1�22 =−6�4�kN��↓�

M�x�= 10x− 5
6
x3 = 10×1�2− 5

6
×1�23 = 10�56kN/m

( )

Hence the shear force and bending moment diagrams are sketched as follows:

C

B
A

10 kN/m

10 kN

7.5 kN

6.4 kN

13.3 kN m
10.56 kN m

9.17 kN m

10 kN

RA RC



Shear and bending moment 73

The following are observations from the above shear force and bending moment diagrams:

(i) If a symmetric beam is subjected to symmetric loads, the shear stress is zero on the
cross-section of symmetry and antisymmetric about the section.

(ii) If a symmetric beam is subjected to symmetric loads, the bending moment diagram is
symmetric about the section of symmetry.

(iii) The distribution of shear force along the axis of a beam is one order higher than the order
of the distributed transverse load.

(iv) The distribution of bending moment along the axis of a beam is two order higher than the
order of the distributed transverse load.

EXAMPLE 4.5
The column—beam system shown in Figure E4.1 is subjected to a horizontal pressure q.
Draw the shear force and bending moment diagrams.

q

a

a

Figure E4.1

[Solution] This is a determinate frame system. The internal forces can be computed by following
the general procedure described in Section 4.8 for single beams.

Step 1: Replace supports by reactions.

C

B

A

RA
V

RC
V

RC
H

Due to the roller pin at A, the horizontal reaction at the support is zero.
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Step 2: Derive solution of the reactions.
Take moment about C: (

�

C)

qa× a

2
−RV

A×a= 0

RV
A = qa

2

Resolve vertically:

RV
A+RV

C = 0

RV
C =−RV

A =−qa

2

Step 3: Identify critical sections.
Sections at A, B and C are critical sections. In addition to the critical sections specified in
Section 4.8, the section at which there is a sudden change in member orientation is also taken
as a critical section.

Step 4: Calculate shear forces and bending moments on the critical sections.

(a) Section at A
The section is supported by a roller pin. Since RH

A = 0, there is no shear force. The bending
moment at the support is also zero. Thus:

VA = 0
MA = 0

(b) Section at B

B

A

C

B

MB
AB

M
BC

VB
AB

V
BC

RA
V

RC
V

RC
H

B

B

For the column, resolving horizontally:

VAB
B +qa= 0

VAB
B =−qa

Taking moment about (
�

B ):

MAB
B +qa

a

2
= 0

MAB
B =−qa2

2
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For the beam, resolving vertically:

V BC
B +RV

C = 0

V BC
B =−RV

C = qa

2

Taking moment about (
�

B ):

a×RV
C−MBC

B = 0

MBC
B =−aRV

C =−qa2

2

(c) Section at C
The pin at C prevents the section from any vertical displacement. The vertical support
reaction is the shear force. The bending moment is zero:

VC = RV
C =−qa

2
MC = 0

Step 5: Draw the shear force and bending moment diagrams.

C

B

–qa
C

B

Shear force Bending
moment 

qa 

2
 / 2

qa 

2
 / 2qa / 2

In the above diagrams, the sign of shear force is shown, while the bending moment diagram is
drawn along the tension side of each member.

(i) The internal force diagram of a frame can be drawn by following exactly the same procedure
followed for a single beam.

(ii) At a rigid joint of two members, the bending moment is constant across the joint if the
there is no external moment applied at the location.

(iii) At a rigid joint of two members, the shear force is not necessarily constant across the joint
even if there is no concentrated load applied at the location.

4.10 Conceptual questions

1. What are the general conditions for a beam to be in equilibrium?
2. What is a ‘cantilever’ and how is its equilibrium maintained?
3. What is a ‘simply supported beam’ and how is its equilibrium maintained?
4. Explain the terms ‘shear force’ and ‘bending moment’.
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5. Explain how the shear force and bending moment can be found on a section of a beam?
6. What are shear force and bending moment diagrams?
7. What are the relationships between shear force, bending moment and distributed load,

and how are the relationships established?
8. A cantilever is loaded with a triangularly distributed pressure. Which of the following

statements is correct?

(a) The shear force diagram is a horizontal line and the bending moment diagram is a
sloping line.

(b) The shear force diagram is a sloping line and the bending moment diagram is a
parabola.

(c) The shear force diagram is a parabola and the bending moment diagram is a cubic
function.

(d) Both the shear force and the bending moment diagrams are parabolas.

9. A span of a beam carries only concentrated point loads, the shear force diagram is a series
of __________________ and the bending moment diagram is a series of ________________.

10. The shear force diagram of a simply supported beam is shown in Figure Q4.10. Which of
the following observations are not correct?

Figure Q4.10

(a) There is a concentrated force applied on the beam.
(b) There is no concentrated moment applied on the beam.
(c) There is a uniformly distributed load applied on the beam.
(d) There is a linearly distributed load applied on the beam.

11. The bending moment diagram of a simply supported beam is shown in Figure Q4.11.
Identify the types of loads applied on the beam.

Parabola

Change of slope

Figure Q4.11

12. Consider a cantilever subjected to concentrated point loads. The maximum bending
moment must occur at the fixed end (Yes/No).
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13. At a point where the shear force diagram passes through zero the bending moment is
either a maximum or a minimum (Yes/No).

14. Over any part of a beam where the shear force is zero, the bending moment has a constant
value (Yes/No).

15. The cantilever is loaded as shown in Figure Q4.15. Which of the following four bending
moment diagrams is correct?

Figure Q4.15

(a) (b) 

(c) (d) 

4.11 Mini test

Problem 4.1: The shear force diagram over a segment of a beam is shown in the figure. Which
of the following statements is not correct?

Parabola

Figure P4.1

(a) A concentrated point load is applied.
(b) A uniformly distributed load is applied.
(c) A concentrated moment may be applied.
(d) A triangularly distributed load is applied.
(e) No concentrated moment is applied.
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m–Fl/2

i Fl/2

Fl/2

F/2

F/2
ql + F/2 

E

k

h
g

f

d

cb
a

F

DCB

A 4 × l

F

m

e

q

j

Figure P4.2

Problem 4.2: From the loaded beam and its shear force and bending moment diagrams shown
in Figure P4.2, complete the following statements:

(a) The difference between the shear forces at c and d is __________.
(b) The slope of line a–b is __________.
(c) The difference between the bending moments at h and i is ________.
(d) The slopes of line i–j and line j–k are, respectively, _______ and _____.

Problem 4.3: A simply supported beam is subjected to a total of load P that is distributed
differently. Calculate maximum shear forces and maximum bending moments for each case and
compare the results. What conclusion can you draw from the comparisons?

5 × P/5

6 × L /5

4 × L /4

P/3 P/3 P/3P

C
B

A

L  /2 L  /2

C
B

A

C
B

A

P/L

C
B

A

L

Figure P4.3
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Problem 4.4: For the beam loaded as shown in the figure draw the shear force and bending
moment diagrams.

q
P

C
B

A

L  /2 L  /2

Figure P4.4

Problem 4.5: Plot the shear force and bending moment diagrams of the beam loaded as shown
in the figure. Sketch the curve of deflection of the beam.

qq a  

2/ 2

C
BA

a a

Figure P4.5



5 Bending stresses in
symmetric beams

In a beam subjected to transverse loads applied within the plane of symmetry (Figure 5.1(a)),
only bending moment and shear forces develop on the cross-section (Figure 5.1(b)). The bending
moment and shear force are, respectively, the resultants of the normal stresses (Figure 5.1(c))
and the shear stresses (Figure 5.1(d)) on the cross-section. The deformation of the beam is
characterized by the following:

• The longitudinal fibres on the top side of the beam contract (are shortened).
• The longitudinal fibres on the bottom side of the beam extend (are elongated).
• Between the top and the bottom sides, there is a parallel surface within which fibres

are neither contracted nor extended.
• Due to the uneven elongation of the fibres, the beam exhibits lateral (transverse)

deformation that is termed as deflection.

Two important beam deformation terminologies (Figure 5.2) are introduced on the basis of
the above conceptual analysis of beam deformation.

(a)
(b)

(c)

(d)

Figure 5.1
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Bottom

Top
Neutral
surface Neutral axis

Symmetric
axis

Centroid

y-axis

Figure 5.2

• The surface formedby thefibres that areneither contractednor extended is calledneutral
surface. This surface lies inside the beam between the top and the bottom surfaces.
The beam fibres under the neutral surface are stretched and are in tension, while the
beam fibres above the neutral surface are compressed and thus in compression.

• The intersection of the neutral surface and a cross-section is called neutral axis. This
intersection is a line within the cross-section and passes through the centroid of the
section. On the cross-section, the area under the neutral axis is in tension, while the
area above the neutral axis is in compression.

5.1 Normal stresses in beams

The normal stresses on a cross-section of a beam subjected to bending are calculated on the
basis of the following basic assumptions:

• A cross-sectional plane, taken normal to the beam’s axis, remains plane throughout
the deformation.

• The strains in the beam’s fibres vary linearly across the depth, proportional to their
distances from the neutral axis.

• Hooke’s law is applicable to the individual fibres, that is, stress is proportional to strain.

The general expression for normal stresses caused by bending at a section is given as:

� = My

I
(5.1a)

where

� – normal stress at an arbitrary point on the section
M – bending moment acting on the section
y – distance from the neutral axis to the arbitrary point with positive y for points within the
area in tension

I – second moment of inertia of cross-section, representing a geometric quantity of the
cross-section and having a unit of, for example, m4. The mathematical expression of I is:

I =
∫
A
y2dA�rea� (5.1b)
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The second moment of inertia of cross-section is an equivalent geometric quantity to the polar
second moment of inertia, J, in torsion and the cross-sectional area, A, in axial tension and
compression. The respective stresses are inversely proportional to the geometrical quantities of
cross-sections.

The maximum normal stress occurs at the farthest fibres away from the neutral axis, that is,
at y = ymax:

�max =
Mymax

I
= M

I/ymax
= M

W
(5.2)

where W = I/ymax is called elastic modulus of section.
An efficient beam section has a small ratio of cross-sectional area and elastic modulus

of section, A/W . Thus, in terms of the normal stress due to bending, an efficient section
concentrates as much material as possible away from the neutral axis. This is why I-shaped
sections are widely used in practice.

The elastic modulus of section reflects the geometric properties of a section and is different
to the elastic modulus of materials, which depends only on material properties.

5.2 Calculation of second moment of inertia

The second moment of inertia is defined by the integral of y2dA over the entire cross-sectional
area with respect to an axis that is usually taken as the neutral axis. It is constant for a given
section. The following procedure can be followed to compute the quality.

(a) Find the centroid of the section.

• For a section having two axes of symmetry, the centroid lies at the intersection of the
two axes.

• For a section having only one axis of symmetry the centroid lies on the axis. For the
section shown in Figure 5.3, the y coordinate of the centroid, y, is given by:

y =
∫
A
ydA

A
(5.3a)

where
∫
A
ydA is called first moment of area and A is the entire area of the

section. FromEquation (5.3a) it canbe seen thatwhen the area and the locationof centroid
of a section are known, the first moment of area can be easily computed by:

∫
A
ydA= y×A (5.3b)

y

y

Area

dA

Figure 5.3
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Neutral
axis

Reference
axis

y

y

dA

o

y

x
y ’

dA

σx

M

y

A
(a)

(b)

Figure 5.4

If A consists of a number of small sub-area(s) Ai and the y coordinates of their centroids are,
respectively, yi , Equation (5.3b) is equivalent to:

∑
i

Aiy i = y×A (5.3c)

(b) Find the neutral axis.

• For a section having two axes of symmetry, the neutral axis is one of them depending
on the direction of bending moment applied on the section.

• For a section having single axis of symmetry, the neutral axis is perpendicular to the axis
of symmetry and passes though the centroid of the section (Figure 5.4).

(c) Calculate second moment of inertia.

• The area integration is usually necessary only for a few regular shapes such as rectangles
and circles. Most cross-sectional areas used in practice may be broken into an assembly
of these regular shapes. Table 5.1 lists the second moments of inertia for some of the
most commonly used shapes of section.

• For a complex cross-sectional area that is an assembly of the above regular shapes, the
parallel axis theorem is used to compute the moment of inertia.

Table 5.1 Second moment of inertial about neutral axis

a
a /2

a /2

b

h /2

h /2

D = 2R Rout

Rin

I = 1
12

a4 I = 1
12

bh3 I = �

64
D4 = �

4
R4 I = �

4
�R4

out−R4
in�
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Neutral axis (NA)
d2

d1

Centroid of (2)

(1)

(2)

Centroid of (1)

PA1

PA2

Figure 5.5

The parallel axis theorem states that the moment of inertia of an area, I, about an arbitrary
axis equals the moment of inertia of the same area about a parallel axis passing through
the area’s centroid, I0, plus the product of the area, A, and the square of the distance
between the two axes, d, i.e.,

I = I0+Ad2 (5.4)

For example, the T section shown in Figure 5.5 is composed of two rectangles. The moment of
inertia of the entire T section about its neutral axis is obtained by adding the moments of inertia
of the two rectangles about the same axis, that is:

INA�T�= I
�1�
NA� �+ I

�2�
NA

( )
where

I
�1�
NA� �= I

�1�
PA1+A�1��d1�

2

I
�2�
NA

( )
= I

�2�
PA2+A�2��d2�

2

I
�1�
PA1 =moment of inertia of area (1) about axis PA1

I
�2�
PA2 =moment of inertia of area (2) about axis PA2

A�1� = area of section (1)
A�2� = area of section (2)
PA1= parallel axis passing through the centroid of A�1�

PA2= parallel axis passing through the centroid of A�2�

5.3 Shear stresses in beams

In Figure 5.1(d), it can be noted the shear force on the section causes shear stress distribution. It
can be conceptually argued that the vertical shear stress along the top and bottom boundaries
of the section must vanish. This is because of the fact that shear stresses always occur in pair
on two perpendicular planes (Figure 5.6). Since there is no shear stress on the top and bottom
surfaces of the beam, the vertical shear stresses on the cross-section along the intersection of,
for example, the top surface and the cross-section must also be zero. Thus, the distribution of
shear stress across the depth of a beam, � , can be parabolic (zero along the top and bottom
sides and nonzero in between). For prismatic beams subjected to bending, the shear stress is
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τ

Figure 5.6

y

Shaded area
A*

y

Shear
stress at
this point

Neutral
axis

Figure 5.7

distributed parabolically, depending on the distance to the neutral axis. For symmetric bending,
shear stresses are constant along any straight lines that are parallel to the neutral axis:

� = VS∗

bI
(5.5a)

where

V – the shear force acting on the section
b – the breadth of the beam at the location where the shear stress is computed
I – the second moment of inertia of the entire section about the neutral axis
S∗ – the first moment of area about the neutral axis for the area enclosed by the boundary

and the parallel line passing through the point at which shear stress is computed, that is,
for the shaded area of Figure 5.7:

S∗ =
∫
A∗
ydA∗ (5.5b)

5.4 Key points review

• The centroid is the center of a section.
• The moment of inertia of an area represents the geometric contribution of a cross-

section to the bending resistance.
• The moment of inertia of an area about any axis is the moment of inertia of the area

about a parallel axis passing through the area’s centroid, plus its area times the square
of the distance from the centroid to the axis (parallel axis theorem).

• A cross-sectional plane remains plane after bending deformation.
• There is no normal (axial) stress or strain due to bending at the neutral axis.
• Normal stress is compressive on one side of the neutral axis and tensile on the other side.
• The bending moment on a cross-section is the resultant of the normal stresses distrib-

uted on the same section.
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• Normal strains and stresses are linearly distributed across the depth of a beam, propor-
tional to the distance from the neutral axis.

• If a cross-section is made of one material, the normal stress is distributed continuously
across the depth.

• Maximum normal stress occurs at a point furthest from the neural axis.
• The ratio between the second moment of inertia and the distance from neutral axis

to the farthest point is termed elastic modulus of section and is a very important
design parameter.

• An efficient section in bending concentrates more material away from the neutral axis
such that a maximum elastic modulus of section (W ) can be achieved with the use of
a minimum cross-sectional area (A).

• For materials with different tensile and compressive strength, a shift of the neutral
axis from the mid-depth of sections is desirable.

• Shear stress is distributed parabolically across the depth of beam.
• For a section with constant breadth, b, maximum shear stress occurs along the neutral

axis.
• For a section with variable breadth, b, maximum shear stress occurs at the location

where S∗/b is maximum.
• Shear stress distribution discontinues (abrupt increase or decrease) at the locations

where the breadths of section have abrupt changes.
• The shear force on a cross-section is equal to the resultant of the shear stresses

distributed on the same section.

5.5 Recommended procedure of solution

Compute bending moments and shear
forces on the cross-sections where
stresses are required.

Locate centroid and neutral
axis of the section.

Compute the moment of inertia about the neutral
axis (the parallel axis theorem may be needed
for complex sections).

Apply Equation (5.1) to
compute normal stress.

Compute the first moment of area
relative to the location where shear
stress is calculated.

Apply Equation (5.5) to
compute shear stress.
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5.6 Examples

EXAMPLE 5.1
A beam of hollow circular section is loaded with concentrated point loads as shown in
Figure E5.1. The inside and outside diameters of the hollow circular section are 45mm
and 60mm, respectively. Calculate the maximum normal stress of the beam.

EDCBA
D in

Dout
5 kN

0.3 m0.4 m 0.8 m 0.2 m

3 kN 3 kN

Figure E5.1(a)

[Solution] For a beam with constant cross-section, the maximum normal stress and the maximum
bending moment always occur on the same cross-section. A bending moment diagram is
essential to determine the maximum bending moment and its location. This can be done by
following the procedure described in Chapter 4.

Step 1: Compute support reactions (Figure E5.1(b)).

Taking anticlockwise moment about A (  )

3 kN

ECB

RA
RD

5 kN

0.3 m0.4 m 0.8 m 0.2 m

3 kN

Figure E5.1(b)

RD×1�4m−5kN×0�4m−3kN×1�2m−3kN×1�7m= 0

RD = 7�64kN�↑�

Resolving vertically:

RA+RD−5kN−3kN−3kN= 0

RA = 11kN−VD = 3�36kN�↑�
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Step 2: Compute the bending moments on the critical sections at A, B, C, D and E (Figure E5.1(c)).

VC

B

5 kN

0.4 m 0.8 m

RA

MC

MD

VD

CB

RA

5 kN

0.4 m 0.8 m 0.2 m

3 kN

RA

MB

VB

B

0.4 m

Figure E5.1(c)

(a) Section at A
Due to the pin support:

MA = 0

(b) Section at B
Taking anticlockwise moment about B:

MB−RA×0�4m= 0

MB = 3�36kN×0�4m= 1�34kN m (  )

(c) Section at C
Taking anticlockwise moment about C:

MC−RA×1�2m+5kN×0�8m= 0

MC = 3�36kN×1�2m−5kN×0�8m= 0�032kN m (  )

(d) Section at D
Taking anticlockwise moment about D:

MD−RA×1�2m+5kN×1�0m+3kN×0�2m= 0

MD = 3�36kN×1�4m−5kN×1�0m−3kN×0�2m

=−0�896kN m

(  )
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(e) Section at E
Due to the free end:

ME = 0

Step 3: Draw the bending moment diagram (Figure 5.1(d)).
Since there is no distributed load applied between the critical sections, the bending moment
distributions between these sections are slopping lines.

D

CB

1.34 kN m

0.032 kN m

0.896 kN m

Figure E5.1(d)

It is clear from the bending moment diagram that the maximum magnitude of bending moment
occurs on the section at B, that is:

Mmax = 1�34KN m

Thus, the maximum normal stress occurs on the same section.

Step 4: Compute second moment of inertia.
From Table 5.1 the moment of inertia of the hollow circular section:

I = �

64
�R4

out−R4
in�=

�

64
�D4

out−D4
in�=

�

64
�604−454�mm4

= 4�35×10−7 m4

Step 5: Compute normal stresses.
From Equation (5.1),
at B:

�max =
Mmaxymax

I
= MmaxDout/2

I
= 1�34kN m×30×10−3 m

4�35×10−7 m4

= 92�41MN/m2

EXAMPLE 5.2
A simply supported steel beam is subjected to a uniformly distributed load as shown in
Figure E5.2. The maximum allowable normal stress of the material is 160MPa. Design the
beam with a circular section, a rectangular section of h/b = 2 and an I-shaped section,
respectively.

(Continued)
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EXAMPLE 5.2 (Continued)

h

b

d

q = 10 KN/m

4 m

Figure E5.2

[Solution] The maximum bending moment occurs at the mid-span. The maximum normal stress
on the cross-section at the mid-span must be calculated first. The stress is then compared with
the allowable stress of the material to determine the size of the cross-section.

Step 1: Compute the reaction forces at the supports.
Since the beam is symmetrically loaded, the two support reactions are equal to half of the total
applied load and act vertically upwards.

M

R

q = 10 KN/m

2 m

R = 1
2
�10×4�= 20kN

Step 2: Compute the mid-span (maximum) bending moment:

M = 2R−10×2×1= 40−20= 20kN m

Step 3: Section design.
The maximum normal stress on the section at the mid-span is:

� = Mymax

I
= M

I/ymax
= M

W

(a) For a circular section:

I = �d4

64
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ymax =
d

2

W = I

ymax
= �d3

32

Thus:

� = M

I/ymax
= 20

�d3/32
≤ 160×106

d ≥ 3

√
20×103×32
�×160×106

= 10�838×10−2 m= 10�84cm

The minimum area of the circular section:

Ac =
�d2

4
= �×10�842

4
= 92�29cm2

(b) For a rectangular section (h= 2b):

I = 1
12

bh3 = 1
12

b�2b�3 = 2
3
b4

ymax =
h

2
= b

Thus:

� = M

I/ymax
= 20

2b3/3
≤ 160×106

b≥ 3

√
3×20×103

2×160×106
= 5�724×10−2 m= 5�72cm

The minimum area of the rectangular section:

Ac = b×h= 2b2 = 2×5�722 = 65�44cm2

(c) For an I-shaped section (UB section):
From the British Standard (BS) sections, I/ymax is named as elastic modulus of a section,
which is used as a design parameter:

� = M

I/ymax
= 20

I/ymax
≤ 160×106

I/ymax ≥
20×103

160×106
= 0�125×10−3 m3 = 125cm3

The BS 5950 provides a table of elastic moduli sections for many UB (I-shaped) sections.
The modulus that is immediately larger than 125cm3 from the list is 153cm3. The section
designation of this modulus is UB 178×102×19 that has a cross-sectional area of 24�3cm2.
Thus, the minimum area of the I-shaped section is:

AI = 24�3cm2
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The comparison for the weights of the beam using the three different sections can be
made by comparing the cross-sectional areas of the sections. Obviously, amongst the three
sections, the I-shaped section is the most economic one, which is more than three times
lighter than the circular section.

EXAMPLE 5.3
A beam having the cross-section as shown in Figure E5.3 is subjected to a shear force of
12 kN and a bending moment of 12 kN m on a section. Compute (a) the normal stresses
along the top and bottom surfaces of the hollow area; (b) the maximum magnitudes of
the normal and shear stresses; and (c) the normal and shear stress distributions.

80 mm

yc

40 mm

280 mm

160 mm

100 mm

Figure E5.3(a)

[Solution] The cross-section is not symmetric about any horizontal axis. Thus the vertical location
of the centroid must be found first. The horizontal axis passing through the centroid is then
the neutral axis. This can be done by treating the area enclosed by the outside boundary and
deducting from it the hollow area enclosed by the inside boundary.

Step 1: Compute the vertical distance of the centroid from the bottom side.
This can be done in the following tabular form.

Area A (mm2) y(mm) from the bottom
∫
ydA= Ay�mm3�

Gross section 160×280= 44
800 140 6,272,000
Hollow area 100×80= 8000 140+50= 190 1,520,000

Thus from Equation (5.3) for the actual section:

∑
A= 44
800−8000= 36
800mm2

∑
Ay = 6
272
000−1520
000= 4
752
000mm3

yc =
∑

Ay∑
A

= 4
752
000
36
800

= 129�1mm
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The neutral axis is 129.1mm above and parallel to the bottom side of the section.

Step 2: Compute the moment of inertia from the parallel axis theorem.
For the gross area enclosed by the outside boundary (Figure E5.3(b)) the moment of inertia
about the neutral axis is computed from Equation (5.4) as:

d = 140 – 129.1

Neutral
axis

129.1 mm

160 mm

280 mm centroid

Figure E5.3(b)

Igross = I0+Ad2 = 160×2803

12

+280×160× �140−129�1�2

= 2�98×108mm4

For the hollow area (Figure E5.3(c)) the moment of inertia about the neutral axis is also computed
from Equation (5.4) as:

80 mm

Neutral axis

centroid

100 mm

d

Figure E5.3(c)

Ihollow = Iout+Ad2 = 90×1003

12

+100×80× �190−129�1�2

= 3�72×107mm4

The moment of inertia of the cross-sectional area:

I = Igross− Ihollow

= �29�8−3�72�×107 = 26�1×107mm4
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Step 3: Compute normal stresses.
Along the top surface of the hollow area
The distance from the neutral axis to the surface, that is, the y coordinate of the surface:

y =−�140−129�1+100�mm=−110�9mm

� = My

I
= 12kN m× �−110�9�×10−3 m

26�1×10−5 m4
=−5�1MN/m2 �compression�

Along the bottom surface of the hollow area
The distance from the neutral axis to the surface, that is, the y coordinate of the surface:

y =−�140−129�1�mm=−10�9mm

� = My

I
= 12kN m× �−10�9�×10−3 m

26�1×10−5 m4
=−0�5MN/m2 �compression�

Step 4: Compute the maximum magnitude of normal stress.
It is obvious from Equation (5.1) that the maximum magnitude of normal stress occurs along
the top side of the section since its distance to the neutral axis is the maximum. This distance is:

y =−�280−129�1�mm

� = My

I
= 12kN m× �−150�9�×10−3 m

26�1×10−5 m4
=−6�94MN/m2 �compression�

Step 5: Compute the maximum magnitude of shear stress.
From Equation (5.5) the maximum magnitude of shear stress may occur at the location where (a)
the S∗ defined in Equation (5.5) is maximum or (b) the breadth of the cross-section, b, is minimum.

(a) S∗ is always maximum along the neutral axis. Consider the area below the neutral axis:

S∗ =∑
Ay = 160mm×129�1mm× 129�1mm

2
= 1�33×10−3 m3

� = VS∗

bI
= 12kN×1�33×10−3 m3

160×10−3 m×26�1×10−5 m4
= 0�382MN/m2

(b) b is minimum between the top and the bottom surfaces of the hollow area, while with this
range the S∗ taken for the area immediately above the bottom side of the hollow part is
the largest. Thus at this location (140mm from the top):

S∗ =∑
Ay = 140×160× �140−129�1+70�−100×80× �140−129�1+50�

= 1�32×10−3 m3

� = VS∗

bI
= 12kN×1�32×10−3 m3

2×40×10−3 m×26�1×10−5 m4
= 0�76MN/m2

Therefore the maximum magnitude of shear stress occurs at the location 140mm below the
top surface of the cross-section. At the same location, if we take the breadth of the solid part
as b in Equation (5.5), that is:

� = VS∗

bI
= 12kN×1�32×10−3 m3

160×10−3 m×26�1×10−5 m4
= 0�379MN/m2
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Observation: Due to the abrupt change of the breadth of section when across the bottom
side of the hollow area (from 160mm to 80mm), the shear stress jumps from 0�379MN/m2

to 0�76MN/m2. It can be concluded that on a cross-section if the breadth of section changes
suddenly across a line, the shear stress also has a sudden change (increased or decreased) by
the ratio of change in breadth, that is, the ratio of the breadth immediately below and above
the line. In this example, the ratio is 160/80= 2. The shear stress above the line (140mm from
the top) is therefore twice as big as it is below the line.

By calculating the normal stress at the bottom surface and the shear stresses above and below
the top side of the hollow area, the normal and shear stress distribution on the cross-section
can be sketched as below:

0.76

0.38

0.5

5.1

6.94

Obviously, a sudden change in geometry of the cross-section does not introduce sudden change
in normal stress, but in shear stress distribution.

EXAMPLE 5.4
Determine the maximum normal stresses in the concrete and the steel in a simply
supported reinforced concrete beam subjected to uniformly distributed load of 1250 lb/ft
over a span of 25 ft. The cross-section of the beam, as shown in Figure E5.4, is reinforced
with three steel bars having a total cross-sectional area of � in2. Assume that the ratio
of E for steel to that for concrete is 15 and ignore all concrete in tension.

π in.215 feet

25 feet

47.12 in.2

Neutral
axis

Yc

Figure E5.4

[Solution] Since the stress-carrying capacity of concrete in tension zone is significantly smaller
compared with steel, all concrete below the neutral axis is neglected. The bending moment on
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a cross-section of the beam is balanced by the compression in the concrete and the tension in
the steel reinforcement. To compute the location of the neutral axis and stress distribution on
the cross-section, the area of the steel needs to be transferred to its equivalent area of concrete
on the basis of the ratio of E, so that all the formulas developed for beam-bending problems
are valid. The transformation is based on the assumption that the strains and the resultant force
in the steel reinforcement and the equivalent concrete are equal.

Step 1: Compute support reactions.
Since the beam is symmetrically loaded, the two support reactions are both equal to half of the
total applied load and act vertically upwards:

R = 1250×25
2

lb

Step 2: Compute bending moment.
The maximum normal stress occurs on the cross-section subjected to the maximum bending. It
is obvious that the maximum bending moment occurs at the mid-span. The bending moment
at the mid-span is calculated as follows:

Taking moment about the mid-span:

lb
2

1250 × 25

1250 ft/lb

12.5 ft

M

M = 1250×25
2

×12�5−1250×12�5× 12�5
2

= 97656�25 lb/ft

= 1171875 lb/in

Step 3: Compute the equivalent concrete area Aeq of the steel.
Assume that on the equivalent concrete Aeq and the steel bars Asteel, both the strains and the
resistance forces are the same. Thus:

�steelAsteel = �eqAeq (E5.3.1)

or

Esteel�steelAsteel = Ec�eqAeq

Since:
�steel = �eq

Aeq =
Esteel
Ec

Asteel = 15Asteel = 15� = 47�12 in�2 (E5.3.2)

Thus, the steel reinforcement can be replaced by an equivalent concrete area of 47�12 in2 (see
Figure E5.4).
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Step 4: Compute vertical distance of the centroid from the top.

Area A�in2� y(in) from the top
∫
ydA= Ay�in3�

Concrete in compression 15× yc yc/2 7�5y2c
Equivalent concrete 47.12 25 1178

From Equation (5.3):

∑
A= �15yc+47�12� in�2∑
Ay = �7�5y2c +1178� in�3

yc =
∑

Ay∑
A

= 7�5y2c +1178
15yc+47�12

Hence:

7�5y2c +47�12yc−1178= 0

yc = 9�4 in�

The neutral axis is 9.4 in. below the top surface.

Step 5: Compute moment of inertia of the transferred cross-section.
For the concrete (Figure E5.4):

Ic =
1
12

×15× y3c +15× yc× �
yc
2
�2

= 1
12

×15×9�43+15×9�4× �
9�4
2

�2

= 4152�92 in�4

For the equivalent concrete area (Figure E5.4):

Ieq = 0+Aeq× �25− yc�
2 = 11467�12 in�4

For the entire section:

I = Ic+ Ieq = 15620�04 in�4

Note that zero is given to the moment of inertia of the equivalent area of reinforcement about
the parallel axis passing through its own centriod. This is because the thickness of the equivalent
concrete area is very small and the resulting moment of inertia is far smaller than the second
term in Ieq.

Step 6: Compute normal stresses.
Along the top the maximum compressive stress in concrete occurs:

� = My

I
= 1171875×9�4

15620�04
= 705�2 lb/in� �compression�



98 Bending stresses in symmetric beams

On the equivalent area of reinforcement the maximum tensile stress occurs:

�eq =
My

I
= 1171875× �25−9�4�

15620�04
= 1170�4 lb/in� �tension�

The actual tensile stress in the steel can be computed from Equations (E5.3.1) and (E5.3.2),
that is:

�steel =
Aeq

Asteel
�eq =

Esteel
Ec

�eq = 15×1170�4= 17555�6 lb/in2

EXAMPLE 5.5
Derive an expression for the shear stress distribution on a rectangular section subjected
to a shear force V (Figure E5.5(a)).

V
τ

Figure E5.5(a)

[Solution] This question asks for a straightforward application of Equation (5.5). In order to
find the expression of shear stress distribution, shear stress at an arbitrary location must be
calculated. The cross-section is symmetric and the horizontal axis of symmetry is the neutral axis
of the section.

Step 1: Select an arbitrary point on the cross-section. The vertical distance from the point to the
neutral axis is y (0≤ y ≤ h/2) (Figure E5.5(b)).

y
h

b

Figure E5.5(b)

Step 2: Draw a line passing through the selected point and parallel to the neutral axis.
(Figure E5.5(b)).

Step 3: Calculate the first moment of area S∗ (Equation (5.5)). The parallel line separates the
cross-section into two parts, one of which does not include the neutral axis (Figure E5.5(c)).
Usually the first moment of area of this part about the neutral axis is calculated as S∗.
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Centroid of the sub-
section

b
h /2 – y

y

2
(

2
1 y )hy −=y +

Figure E5.5(c)

The area of the part:

A∗ = b× �
h

2
− y�

The distance from the neutral axis to the centriod of the part:

y = y+ 1
2
�
h

2
− y�= h

4
+ y

2

The first moment of area of the part about the neutral axis:

S∗ = A∗y = b�
h

2
− y�× �

h

4
+ y

2
�

= b

2
��
h2

4
− y2��

Step 4: Compute shear stress distribution.
The moment of inertia of the section about its neutral axis is:

I = 1
12

bh3

and the breadth of the section at the arbitrary location is b. Thus,

� = VS∗

bI
= 12V

b�bh3�
× b

2
��
h2

4
− y2��

= 6V
bh3

��
h2

4
− y2��

The distribution of the shear stress is a parabolic function of the distance, y, from the neutral
axis as shown in Figure E5.5(d). It is obvious that the maximum shear stress occurs along the
neutral axis, that is, at y = 0.

Figure E5.5(d)
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From the expression of distribution:

�max =
6V
bh3

��
h2

4
− y2��

∣∣∣∣
y=0

= 3V
2bh

= 3V
2A

where A�= bh� is the cross-sectional area of the beam. V/A represents the average shear stress
on the section.

• The maximum shear stress due to bending of a rectangular section is 1.5 times larger than
the average shear stress on the section and occurs along the neutral axis.

EXAMPLE 5.6
The compound beam shown in Figure E5.6(a) is composed of two identical beams of
rectangular section: (a) if the two beams are simply placed together with frictionless
contact and the maximum allowable normal stress of the material is [� ], calculate the
maximum value of the force, P, that can be applied on the beam; (b) if the two beams
are fastened together by a bolt as shown in Figure E5.6(b), what is the maximum value
of P; and (c) if the maximum allowable shear stress in the bolt is [�], calculate the
minimum diameter of the bolt when the compound beam is loaded with the P calculated
from (b).

h

b
P P

L

(a) (b) 

Figure E5.6

[Solution] This example tests your understanding of bending deformation in relation to neutral
axis. In Case (a), due to the frictionless contact, the two beams slide on each other and deform
independently, each of which carries a half of the total bending moment induced by P. Therefore,
the two beams have their own neutral axes. In Case (b), the two beams are fastened together
so that the compound beam acts as a unit and has only one neutral axis.

Neutral
surface

(a) (b) 
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(a) The maximum normal stress occurs at the fixed end where the bending moment is the
maximum:

Mmax = PL

The maximum bending moment carried by each of the beams is therefore PL/2. Thus, by
Equation (5.1), the maximum normal stress within each of the beams is:

� = My

I
=

PL

2
× h

4
1
12

×b× (h
2

)3 = 12PL
bh2

≤ ���

So the maximum force that can be applied on the beam is:

Pmax ≤
��� bh2

12L

(b) When the two beams act as a unit, the contact surface is now the neutral surface. The
maximum normal stress is then:

� = My

I
= PL× h

2
1
12 ×b×h3

= 6PL
bh2

≤ ���

So the maximum force that can be applied on the beam for this case is:

Pmax ≤
��� bh2

6L

It can be seen that the bonded beam has higher load-carrying capacity than that of the
two separated beams.

(c) Assume that the two beams are bonded perfectly together, and the maximum shear stress
occurs along the neutral axis. Thus by Equation (5.4):

�max =
VS∗

bI
= Pmax

b× 1
12bh

3
b× �

h

2
�× �

h

4
�

= ��� bh2

6L
3

2bh
= ��� h

4L

Since the beam has a constant shear force distribution along the axis, this maximum shear
stress applies to any cross-section of the beam. Thus the resultant of the shear stresses
acting on the neutral surface is:

b

L

τ
Neutral axis
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Q= �max ×b× L

In case (c), the shear force is entirely carried by the bolt that has a cross-sectional area of
�d2/4, where d is the diameter of the bolt. The shear stress in the bolt is:

� = Q

A
= �maxbL

�d2/4
= ��� h

4L
× bL

�d2/4
= ��� hb

�d2
≤ ���

So the minimum diameter of the bolt is:

d ≥
√
��� bh

����

5.7 Conceptual questions

1. What is meant by ‘neutral axis’?
2. What is meant by ‘the second moment of area of a cross-section?’ If this quantity is

increased, what is the consequence?
3. What is the parallel axis theorem, and when can it be used?
4. What is meant by ‘elastic modulus of section?’ Explain how it is used in steel design.
5. How is the normal stress due to bending distributed on a beam section?
6. Why do normal stresses due to bending vary across a beam’s cross-section?
7. When a beam is under bending, the magnitudes of the maximum compressive and the

maximum tensile stresses are always the same? (Y/N)
8. The cantilever shown in Figure 5.8 has an I-shaped section and is loaded with a

uniformly distributed pressure. The dashed line passes through the centroid of the cross-
section.

h /2

h /2 

Figure Q5.8

Which of the following statements is correct?

(a) The dashed line is the neutral axis and the maximum tensile stress occurs in the fibre
along the bottom surface on the cross-section at the fixed end.

(b) The dashed line is the neutral axis and the maximum tensile stress occurs in the fibre
along the top surface on the cross-section at the fixed end.

(c) The solid line is the neutral axis and the maximum tensile stress occurs in the fibre
along the bottom surface on the cross-section at the fixed end.

(d) The solid line is the neutral axis and the maximum tensile stress occurs in the fibre
along the bottom surface on the cross-section at the fixed end.

9. Explain why symmetric sections about neutral axis are preferable for beams made of
materials with equal tensile and compressive strengths, while unsymmetrical sections
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about neutral axis are preferable for beams made of materials with different tensile and
compressive strengths.

10. When a beam is under bending, the maximum shear stress always occurs along the neutral
axis? (Y/N)

11. The cross-section shown in Figure Q5.11 is loaded with a shear force V . Which one of the
following statements is correct when Equation (5.5) is used to calculate the shear stress
along m–m.

mm

Neutral axis

Figure Q5.11

(a) In Equation (5.5), S∗ denotes the first moment of area of the entire cross-sectional
area about the neutral axis and b is the width of the section along m–m.

(b) In Equation (5.5), S∗ denotes the first moment of area of the entire cross-sectional
area about the neutral axis and b is the width of the section along the neutral
axis.

(c) In Equation (5.5), S∗ denotes the first moment of area of the section below m–m
about the neutral axis and b is the width of the section along m–m.

(d) In Equation (5.5), S∗ denotes the first moment of area of the section below m–
m about the neutral axis and b is the width of the section along the neutral
axis.

12. Two beams of the same material and cross-section are glued together to form a combined
section as shown in Figure Q5.12.

Figure Q5.12

If the beam is subjected to bending, which form of the following normal stress distributions
is correct?

(a) (b) (c) (d)
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If the two beams are simply placed together with frictionless contact, which form of the
above normal stress distributions is correct?

13. In Question 12, if the cross-sections of the two beams are channel-shaped, as shown in
Figure Q5.13, and the contact between the two beams are frictionless, which form of the
normal stress distributions shown in Question 12 is correct?

Figure Q5.13

14. The beam shown in Figure Q5.14 is composed of two identical planks that are placed either
horizontally or vertically and not fastened together. If the beam is under pure bending,
which one of the following statements is correct?

a

a

section (a) section (b)

Figure Q5.14

(a) The maximum normal stresses in sections (a) and (b) are the same.
(b) The maximum normal stress in section (a) is greater.
(c) The maximum normal stress in section (b) is greater.
(d) Any of the above statements can be correct, depending on the magnitude of the

bending moment applied.

15. On the cross-section of a steel beam under bending, which one of the following statements
is correct?

(a) At the point where the maximum normal stress occurs, shear stress is always zero,
while at the point where the maximum shear stress occurs, normal stress is not
necessarily zero.

(b) At the point where the maximum normal stress occurs, shear stress is not zero,
while at the point where the maximum shear stress occurs, normal stress is always
zero.

(c) At the point where the maximum normal stress occurs, shear stress is always zero,
and at the point where the maximum shear stress occurs, normal stress is also
zero.

(d) At the point where the maximum normal stress occurs, shear stress is not zero,
and at the point where the maximum shear stress occurs, normal stress is also not
zero.
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5.8 Mini test

Problem 5.1: The following four cross-sections have the same cross-sectional area and are
made of the same material. Which one of them is the most efficient section and which of them
is the least efficient? Explain why.

(a) (b) (c) (d)

Figure P5.1

Problem 5.2: Sketch shear stress distributions on the following cross-sections subjected to a
vertical shear force.

(a) (b) (c) (d)

Figure P5.2

Problem 5.3: A T beam shown in the Figure P5.2 is subjected to a uniformly distributed load.
Determine the location of the cross-section on which maximum tensile stress and maximum
compressive stress occur and calculate the magnitudes of these stresses. Plot the distribution of
the normal stress on the cross-section.

20 mm

30 mm

160 mm

200 mm

50 kN/m

2 m 1 m

Figure P5.3

Problem 5.4: For the beam shown in Problem 5.3, Determine the location of the cross-section
on which maximum shear stress occurs. Find an expression for the shear stress distribution on
the section and calculate the magnitude of the maximum shear stress.
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Problem 5.5: Determine the maximum allowable bending moment that can be applied to the
composite beam section shown in Figure P5.4. The wood beam is longitudinally reinforced with
steel strips on both the top and the bottom sides. The two materials are fastened together
so that they act as a unit. The maximum allowable normal stresses of wood and steel are,
respectively, 8�3MN/m2 and 140MN/m2. (Esteel = 200GPa, Ewood = 8�3GPa).

200 mm 

10 × 150 

10 × 50

300 mm 

Figure P5.4



6 Deflection of beams
under bending

A beam is any long structural member on which loads act perpendicular to the longitudinal axis.
If the cross-section of the beam has a plane of symmetry and the transversely applied loads are
applied within the plane, the axis of the beam will deflect from its original position within the
plane of symmetry, as shown in Figure 6.1.

The shape of the deflection curve will depend on several factors, including:

• the material properties of the beam as measured by the elastic modulus of material;
• the beam’s cross-section as measured by its second moment of inertia;
• the load on the beam, described as a function of the position along the beam; and
• the supports of the beam.

If the beam is placed in the x–y coordinate system as shown in Figure 6.1, the vertical deflection
of the axis, y, is a function of the x coordinate and ��x� denotes the slope of the deflection
curve at an arbitrary x coordinate. Bending of a beam is measured by curvature of the deflected
axis that can be approximately calculated by d2y/dx2. The deflection of a beam is characterized
by the following:

• Deflection (positive downwards) = y�x�.

• Slope of deflection curve =
dy�x�

dx
.

• Curvature of deflection curve =
d2y�x�

dx2
.

• Flexural rigidity = EI, representing the stiffness of a beam against deflection. For a given
bendingmoment and at a given section, a stiffer (greater) EI results in a smaller curvature.

y (x)

x

y

θ(x) = dy /dx

Figure 6.1
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y

Positive M(x) Negative M(x)

Negative curvature Positive curvature 

x

Figure 6.2

6.1 Sign convention

A positive bending moment is defined as a moment that induces sagging deflection. As shown
in Figure 6.2, a positive moment always produces a negative curvature in the adopted coordinate
system, where sagging deflection is defined as positive.

6.2 Equation of beam deflection

The extent that a beam is bent, that is, the curvature of deflection curve, is directly proportional
to the applied bending moment M(x), and is inversely proportional to the flexural rigidity EI:

d2y�x�

dx2
=−M�x�

EI
(6.1)

For a beam with a uniform cross-section, from Equations (4.1) and (4.2):

d3y�x�

dx3
=− 1

EI

dM�x�

dx
=−V�x�

EI
(6.2)

d4y�x�

dx4
=− 1

EI

dV�x�

dx
= q�x�

EI
(6.3)

The negative sign on the right-hand side of Equation (6.1) reflects the sign difference between
bending moment and the resulting curvature, following the sign convention described in
Section 6.1. The deflection, y�x�, can be solved from the above differential equations by various
methods of solution.

6.2.1 The integration method

The integration method requires integrating the differential equations of beam deflection up to
four times, depending on whether Equation (6.1), or (6.2) or (6.3) is used. The general procedure
of the integration method is as follows:

• Establish the equation of beam deflection in the form of either Equations (6.1) or (6.2)
or (6.3) as appropriate. The choice of the above differential equations depends on
whether or not an expression of either bending moment, or shear force, or applied
distributed load can be formulated.

• Integrate twice, three times and four times when Equations (6.1), (6.2) and (6.3) are,
respectively, used.

• Apply continuity conditions at the critical sections where either shear force or bending
moment or applied load changes patterns of distribution. This means that at any
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junction of two parts of a beam the deflection and the slope of the deflection curve
must be the same unless they are jointed by a pin.

• Apply support (boundary) conditions for the solution of the integral constants intro-
duced in Step 2.

The most commonly seen support conditions are listed in Table 4.1. Table 6.1 below lists some
typical continuity conditions.

6.2.2 The superposition method

The superposition method can be used to obtain deflection of a beam subjected to multiple
loads, particularly when the deflections of the beam for all or part of the individual loads
are known from previous calculations or design tables, etc. For example, the beam shown in
Figure 6.3(a) can be separated into three different cases. The algebraic sum of the three separate
deflections caused by the separate loads gives the total deflection (Figure 6.3(b)).

Table 6.2 presents beam deflections for a number of typical load-support conditions that can
be used as the separate cases to form the total solution of a complex problem.

The general procedure of the superposition method is as follows:

• Resolve a complex problem into several simpler problems whose deflections are readily
available.

• Express the deflections of the simpler problems in a common coordinate system.
• Superimpose the deflections algebraically to compute the total deflection.

Table 6.1 Continuity conditions at critical sections

Type of critical section Displacements Internal forces

Intermediate roller
support a b

Deflection ya = yb = 0

Slope
dya
dx

= dyb
dx

Bending moment Ma =Mb

Intermediate pin Deflection ya = yb = 0 Shear force Va = Vb

Bending moment Ma =Mb = 0

Concentrated force
P

Deflection ya = yb

Slope
dya
dx

= dyb
dx

Shear force Va−Vb = P

Bending moment Ma =Mb

Concentrated
moment

M Deflection ya = yb

Slope
dya
dx

= dyb
dx

Shear force Va = Vb

Bending moment Ma−Mb =M

Discontinuity in
distributed load

Deflection ya = yb

Slope
dya
dx

= dyb
dx

Shear force Va = Vb

Bending moment Ma =Mb
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Figure 6.3

6.2.3 Macaulay’s method (step function method)

A step function is denoted by the brackets “< >.” For a variable x−a, we define:


x−a�n =
{
�x−a�n x ≥ a

0 x < a
(6.4)

where n is any real number. This function enables us to write the bending moment for the beam
shown in Figure 6.4 in a single equation.
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Table 6.2 Deflection of beam

Load and support Deflection Maximum deflection End rotation

BA

θB

ymax

a b
x

y

P

l

y = Px2

6EI
�3a− x�


0≤ x ≤ a

y = Pa2

6EI
�3x−a�


a≤ x ≤ l

ymax = yB

= Fa2

6EI
�3l−a�

�B =
Fa2

2EI

q
BA

x

y θB

ymaxl

y = qx2

24EI
�x2+6l2−4lx�

ymax = yB

= ql4

8EI

�B =
ql3

6EI

BA
a b

x

y

PθA

θB
ymaxl

y = Pbx

6lEI
�l2−b2−x2�

0≤ x ≤ a

y = P

EI
�
bx

6l
�l2−b2− x2�

+1
6
�x−a�3�

a≤ x ≤ l

ymax =
Pb

9
√
3EIl

×√
�l2−b2�3

At

x =
√
l2−b2

3

�A = Pab�l+b�

6lEI

�B =
−Pab�l+a�

6lEI

BA q
x

y

θA

θB
ymaxl

y = qx

24EI
�l2−2lx2+ x3� ymax =

5ql4

384EI
�A =−�B

= ql3

24EI

DCB

y

q

x

P

M

RERA

x1

x2

x3

Figure 6.4

The bending moments within different parts of the beam are as follows:

• Moment on sections within (A, B) 0≤ x ≤ x1 RAx

• Moment on sections within (B, C) x2 ≤ x ≤ x2 RAx+M

• Moment on sections within (C, D) x2 ≤ x ≤ x3 RAx+M−P�x− x2�

• Moment on sections within (D, E) x ≥ x3 RAx+M−P�x− x2�− 1
2q�x− x3�

2
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By using the step function described in Equation (6.4), the bending moment on an arbitrary
cross-section between A and E, which is x away from the left end of the beam, is:

M�x�= RAx+M 
x− x1�0−P 
x− x2�−
q

2

x− x3�2 (6.5)

From Equation (6.1), thus:

d2y�x�

dx2
=− 1

EI
�RAx+M 
x− x1�0−P 
x− x2�−

q

2

x− x3�2�

dy�x�

dx
=− 1

EI
�
RA

2
x2+M 
x− x1�1−

P

2

x− x2�2−

q

6

x− x3�3�+C1

y�x�=− 1
EI
�
RA

6
x3+ M

2

x− x1�2−

P

6

x− x2�3−

q

24

x− x3�4�+C1x+C2

The unknown constants C1 and C2 are determined using the support conditions.
The general procedure of Macaulay’s method is as follows:

• Set up a coordinate system as shown in Figure 6.4.
• Calculate the support reactions.
• Express bending moment in a single expression in terms of the step function.
• Integrate the equation of deflection (Equation (6.1)).
• Solve the two integration constants from support conditions.
• Insert the obtained integration constants back into the solution of deflection.

6.3 Key points review

• Under the action of bending moment, the axis of a beam deflects to a smooth and
continuous curve.

• The perpendicular displacement of a beam axis away from its original position is called
deflection.

• Due to deflection, cross-sections of a beam rotate about its neutral axis. The rotation is
called slope, which approximately equals the first derivative of deflection with respect
to the coordinate in the axial direction.

• Curvature of a deflected beam is proportional to the bending moment acting on its
cross-section, while inversely proportional to the flexural rigidity of the beam, EI.

• Bending to an arc of a circle occurs when M/EI is a constant (curvature is a constant).
• Deflection of a beam depends on not only M/EI, but also support conditions.
• Deflection of a beam can be reduced by either using a stiffer section or adding

intermediate supports.
• Deflection of a beam subjected to multiple loads is a summation of the deflections of

the same beam subjected to each of the loads individually. (Superposition does not
apply in inelastic problems.)

• The equation of deflection (Equation (6.1)) is only applicable to deflection due to
bending. The deflection due to shear forces are, however, comparatively small in most
practical cases.
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6.4 Examples

6.4.1 Examples of the integration method

EXAMPLE 6.1
Derive expressions for the slope and deflection of a uniform cantilever of length L, loaded
with a uniformly distributed load (UDL). The flexural rigidity of the beam is EI. Calculate
also the slope and deflection at the free end.

x

q

y

Figure E6.1

[Solution] This is a simple problem. Integration can be performed on either Equation (6.1) or
(6.3). Starting from Equation (6.1), bending moment along the x-axis must be sought first and
two support conditions are needed to complete the solution. If Equation (6.3) is used, four
support conditions are needed.

(a) Expressing bending moment in terms of x and integrating Equation (6.1)
(Two boundary conditions are needed. They can be at x = 0
 y = 0 and at x = 0
 dy/dx = 0)

q
x

x

V(x)

M(x)
L – x

x

Taking the origin of the coordinate system at the fixed end, the bending moment at an arbitrary
section, distance x from the origin, is:

M�x�=−q�L− x�× L− x

2
=−q�L− x�2

2

Substituting for M�x� in Equation (6.1):

d2y

dx2
=−M�x�

EI
= q

2EI
�L2−2Lx+ x2�

Since EI is a constant, by direct integration:

dy

dx
= q

2EI

∫ (
L2−2Lx+ x2

)
dx = q

2EI

(
L2x− Lx2+ x3

3

)
+C1
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C1 is a constant of integration and can be determined using the condition that the slope is zero
at the fixed end, that is, at the origin.

Since
dy

dx
= 0 at x = 0 �

C1 = 0

Thus:

dy

dx
= q

2EI

(
L2x− Lx2+ x3

3

)

Integrating again:

y = q

2EI

∫ (
L2x− Lx2+ x3

3

)
dx = q

2EI

(
L2

2
x2− L

3
x3+ 1

12
x4
)
+C2

C2 is the second constant of integration, which can be determined using the condition that the
deflection is zero at the origin.

Since y = 0 at x = 0:

C2 = 0

Thus, the deflection of the beam is:

y = q

2EI

(
L2

2
x2− L

3
x3+ 1

12
x4
)

(b) Integration of Equation (6.3)
(Four boundary conditions are needed. They can be at x = 0
 y = dy/dx = 0 and at x = L
M =
V = 0 ):

EI
d4y

dx4
= q

Since EI is a constant, by direct integration and using Equation (6.2):

EI
d3y

dx3
=

∫
qdx = qx+C1 =−V�x�

The constant C1 is determined by using the condition that the shear force is zero at the free
end.

Since V = 0 at x = L:

qL+C1 =−V�L�= 0

Thus C1 =−qL.
Then:

EI
d3y

dx3
= qx−qL
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Integrating the second time and considering Equation (6.1):

EI
d2y

dx2
= q

2
x2−qLx+C2 =−M�x�

Since M = 0 at x = L:

q

2
L2−qLL+C2 =−M�L�= 0

Thus, C2 =
qL2

2
. Then:

EI
d2y

dx2
= q

2
x2−qLx+ qL2

2

Integrating the third time:

EI
dy

dx
= q

6
x3− qL

2
x2+ qL2

2
x+C3

Since
dy

dx
= 0 at x = 0:

C3 = 0�

Thus, the expression of slope for the beam is:

EI
dy

dx
= q

6
x3− qL

2
x2+ qL2

2
x

or

dy

dx
= q

2EI

(
1
3
x3− Lx2+ L2x

)

Finally:

EIy = q

24
x4− qL

6
x3+ qL2

4
x2+C4

Since y = 0 at x = 0:

C4 = 0�

The deflection of the beam is therefore:

y = 1
EI

(
q

24
x4− qL

6
x3+ qL2

4
x2
)



= q

2EI

(
1
12

x4− L

3
x3+ L2

2
x2
)

which is the same as that obtained from (a).
At the free end x = L, we have
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Slope at the free end:

�L =
dy

dx

∣∣∣∣
x=L

= q

2EI

(
L2L− LL2+ L3

3

)
= qL3

6EI

Deflection at the free end:

y�x=L =
q

2EI

(
L2

2
L2− L

3
L3+ 1

12
L4
)
= qL4

8EI

The slope and deflection are identical to those shown in Table 6.2.

EXAMPLE 6.2
A simply supported beam is loaded with a concentrated force as shown in Figure E6.2.
The flexural rigidity EI is constant. Find the expression of deflection of the beam.

C

y

x

P

RBRA
L

ba

Figure E6.2

[Solution] The concentrated load applied along the beam results in two different expressions of
bending moment. The integration of the equation of deflection must proceed for within AC and
CB, which generates four unknown constants of integration. The four conditions that can be
used to determine the constants are y(x= 0�= 0, y(x= L�= 0, and the continuity of deflection
and slope at C.

Consider the entire beam and take moment about the right-hand-side end, which yields:

RAL−Pb= 0

RA = Pb

L

For a cross-section within AC, the bending moment is:

y

M(x)

RA x

M�x�= RAx =
Pb

L
x
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From Equation (6.1):

EI
d2y

dx2
=−Pb

L
x

So:

EI
dy

dx
=−Pb

2L
x2+C1 (E6.2a)

EIy =−Pb

6L
x3+C1x+C2 (E6.2b)

Since y = 0 at x = 0:

C2 = 0

Thus at x = a:

EIy�x=a =−Pb

6L
a3+C1a

EI
dy

dx

∣∣∣∣
x=a

=−Pb

2L
a2+C1

For a cross-section within CB, the bending moment is:

P

C

y

x
M(x)

RA x

a

M�x�= RAx−P�x−a�= Pb

L
x−P�x−a�

= Pa− Pa

L
x

From Equation (6.1):

EI
d2y

dx2
=−Pa+ Pa

L
x

So:

EI
dy

dx
=−Pax+ Pa

2L
x2+C3

EIy =−Pa

2
x2+ Pa

6L
x3+C3x+C4
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Since y = 0 at x = L:

−PaL2

3
+C3L+C4 = 0 (E6.2c)

At x = a:

EI
dy

dx

∣∣∣∣
x=a

=−Pa2+ Pa

2L
a2+C3 (E6.2d)

EIy�x=a =−Pa

2
a2+ Pa

6L
a3+C3a+C4 (E6.2e)

Equating deflections of both AC and CB at x = a yields (Equations (E6.2b) and (E6.2e):

−Pb

6L
a3+C1a=−Pa

2
a2+ Pa

6L
a3+C3a+C4 (E6.2f)

Equating slopes of both AC and CB at x = a yields (Equations (E6.2a) and (E6.2d)):

−Pb

2L
a2+C1 =−Pa2+ Pa

2L
a2+C3 (E6.2g)

The solution of Equations (E6.2c), (E6.2f) and (E6.2g) gives:

C1 =
Pb

6L
�L2−b2�

C3 =
Pa

6L
�2L2+a2�

C4 =
Pa3

6

With these constants, the expressions of deflection of the beam are:

y = Pbx

6EIL
��L2−b2�− x2� 0≤ x ≤ a

y = Pb

6EIL

[
L

b
�x−a�3+ �L2−b2�x− x3

]
a≤ x ≤ L

It can be concluded from the above example that when applied loads have abrupt changes,
including concentrated forces, moments and patched distributed loads, along a beam, using the
direct integration method normally involves solving simultaneous linear algebraic equations. To
avoid this, Macaulay’s method could be a better option.

6.4.2 Examples of the superposition method

The superposition method is quite useful when a complex load can be resolved into a super-
position of several simple loads, and the deflections due to these simple loads are known.
This method is particularly useful for calculating deflections and slopes at given points along
a beam.
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EXAMPLE 6.3
A uniform cantilever is subjected to a uniformly distributed pressure and a concentrated
force applied at the free end (Figure E6.3). Calculate the deflection and slope of the beam
at the free end.

P
q

y

L

Figure E6.3

[Solution] This is a simple question showing the basic principle of superposition. The beam can
be assumed as under a combined action of the uniformly distributed pressure and the point
load applied at the free end. The deflection and slope of the beam under a single action of
either the pressure or the point load can be found from Table 6.2.

The problem can be resolved into two simple problems as:

q
x

P

x

+

q
x(a)

(b)

(c)

From Table 6.2 the free end deflection and rotation due to the uniform pressure are, respectively:

y�a� =
qL4

8EI

��a� =
qL3

6EI

The deflection and slope at the free end due to the concentrated force can also been found
from Table 6.2 (let b= 0 and a= L in Case 1), which are:

y�b� =
PL3

3EI

��b� =
PL2

2EI
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Thus, the total deflection and slope of the beam at the free end are, respectively:

yTotal = y�a�+ y�b� =
qL4

8EI
+ PL3

3EI

�Total = ��a�+��b� =
qL3

6EI
+ PL2

2EI

EXAMPLE 6.4
Calculate the free end deflection of the beam shown in Figure E6.4. The beam has a
uniform flexural rigidity.

B
x

q

y

A
C

a
l

Figure E6.4

[Solution] To use the solution presented in Table 6.2, the UDL is extended to the fixed end (Case
(a)) and is effectively removed by applying an upward UDL of equal magnitude between A and
B (Case (b)).

C

C

B

A

(a)

(b)

B

A

C
B

A

+

From Table 6.2, the deflection and the slope at the free end of Case (a) are, respectively:

y
�a�
C = ql4

8EI

�
�a�
C = ql3

6EI
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For Case (b) since the segment between B and C is not loaded and the right-hand-side end
is completely free, the slope at C is identical to the slope at B. The deflection at the free end
equals the deflection at B plus the product of the slope at B and the length of BC:

�
�b�
C = �

�b�
B =−qa3

6EI

y�b�c = y
�b�
B +�

�b�
B �l−a�=−qa4

8EI
− qa3

6EI
�l−a�

The total deflection and slope at the free end are, respectively:

yC = y
�a�
C + y�b�c = ql4

8EI
− qa4

8EI
− qa3

6EI
�l−a�= q

24EI
�3l4−4la3+a4�

�C = �
�a�
C +�

�b�
C = ql3

6EI
− qa3

6EI
= q

6EI
�l3−a3�

EXAMPLE 6.5
A simply supported uniform beam is subjected to a uniform pressure from the mid-span
to the right-hand-side support as shown in Figure E6.5. Use the superposition method to
calculate the mid-span deflection.

y

q

x

L
L/2

Figure E6.5

[Solution] There are no solutions in Table 6.2 that can be used directly. However, the UDL can
be taken as a sum of an infinite number of small concentrated forces acting on the beam. The
deflections at the mid-span due to these concentrated forces can be found from Table 6.2. The
summation of the infinite number of deflections can be calculated in the form of integration.

x

da
y

qda 
a b

L/2

The beam shown above is subjected to a concentrated force, qda, at a distance a away from
the left-hand-side support. From Table 6.2 (Case 3), the following mid-span deflection can be
obtained:
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dym = qda�L−a�L/2
6LEI

�L2− �L−a�2− L

4

2

�

= q

EI
�
L2

16
�L−a�− 1

12
�L−a�3�da

when P is replaced by qda, l replaced by L, x replaced by L/2, and b is replaced by L−a. Thus,
the total mid-span deflection due to the distributed load is:

ym =
∫ L

L/2

q

EI
�
L2

16
�L−a�− 1

12
�L−a�3�da= 5qL4

768EI

EXAMPLE 6.6
Find the deflection for the uniformly loaded, two-span continuous beam shown in
Figure E6.6. EI is constant.

q

x

y LL

Figure E6.6

[Solution] This is a statically indeterminate beam whose reactions cannot be determined using
the equilibrium conditions. Superposition method can, sometimes, be used conveniently to
calculate the reactions. The beam shown in Figure E6.6 can be taken as the superposition of
a beam subjected to the uniform downward pressure and the same beam subjected to an
unknown concentrated upward force at the mid-span. The combined action of the two loads
results in a zero deflection at the mid-span of the beam.

+

P

q

x

y L

⇓

L

L

LL

L
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From Table 6.2, the mid-span deflections of the beam due to the UDL and the concentrated
force are, respectively:

yUDL =
5q�2L�4

384EI
= 5qL4

24EI

yP =−P�2L�3

48EI
=−PL3

6EI

Thesumofthesetwodeflectionsmustbezerobecausethebeamis roller-pinnedat themid-span.So:

5qL4

24EI
− PL3

6EI
= 0

P = 5qL
4

The deflection of the beam is equal to the deflection due to the uniform load plus the deflection
of the beam subjected to an upward concentrated force, 5qL/4, at the mid-span. From Table 6.2,
for example, the deflection of the left-hand-side span is:

yUDL�x�=
qx

24EI
�l3−2lx2+ x3�= qx

24EI
��2L�3−2�2L�x2+ x3�

= qx

24EI
�8L3−4Lx2+ x3�

yP�x�=
Pbx

6lEI
�l2−b2− x2�= PLx

6�2L�EI
��2L�2− L2− x2�

= 5qx
48EI

�3L3− x2L�

y�x�= yUDL�x�− yP�x�=
q

48
�2x4−3Lx3+ L3x� 0≤ x ≤ L

Due to symmetry, the deflection of the right-hand-side span is numerically identical to the above
though the expression of the curve is different (yP�x� for L≤ x ≤ 2L should be used in the above
superposition).

6.4.3 Examples of Macaulay’s method

EXAMPLE 6.7
A uniform beam 16 ft long is simply supported at its ends and carries a uniform distributed
load of q = 0�5 ton/ft between B and C, which are 3 ft and 11 ft from A, respectively. The
beamalso carries a concentrated force of P = 6 tons 13 ft fromA. If E =13,400 tons/in.2 and
I =204.8 in.4, obtain the deflection of the beam and calculate the mid-span deflection.

CB

DA

y

q

x

P

RA RD

Figure E6.7
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[Solution] The change of load patterns can be dealt with by the step functions (Equation (6.4))
and the general expression of bending moment (Equation (6.5)). When using Macaulay’s method
with distributed loads it is essential that the distributed load is continued to the end of the
beam. In this example, the distributed load is extended to cover the extra range CD. To remove
the additional loading an upward pressure of the same magnitude must also be applied in the
same range.

The equivalent loading of the beam is shown below:

q

C
B

B
A

y

q

x

P

RA RD

D

To use Equation (6.5), the reaction force at A must be obtained first.
Taking moment about D (Figure E6.7)

16RA = 0�5×8×9+6×3

RA = 3�375 tons

Hence from Equation (6.5), for an arbitrary section at a distance x from A:

M�x�= RAx−P 
x−13�− q

2

x−3�2+ q

2

x−11�2

= 3�375x−6 
x−13�− 0�5
2


x−3�2+ 0�5
2


x−11�2

From Equation (6.1):

EI
d2y

dx2
=−M�x�

=−3�375x+6 
x−13�+ 0�5
2


x−3�2− 0�5
2


x−11�2

Integrating once:

EI
dy

dx
=−3�375

2
x2+3 
x−13�2+ 1

12

x−3�3− 1

12

x−11�3+C1

Integrating twice:

EIy =−3�375
6

x3+
x−13�3+ 1
48


x−3�4− 1
48


x−11�4+C1x+C2

The two constants of integration can be determined by introducing support conditions.

At x = 0
 y = 0


C2 = 0 (use the properties of step function defined in Equation (6.4))
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At x = 16
 y = 0�

0=−3�375
6

×163+
16−13�3+ 1
48


16−3�4− 1
48


16−11�4+16C1

C1 = 105�94

The deflection of the beam is:

y�x�= 1
EI
�−0�5625x3+
x−13�3+ 1

48

x−3�4− 1

48

x−11�4+105�94x�

At the mid-span, x = 8′′:

ymid =
122

13400×204�8
�−0�5625×83+ 1

48
54+105�94×8�= 0�03 ft

= 0�361 in�

EXAMPLE 6.8
A built-in beam of length L carries a concentrated load P at distance a from the left-
hand-side end (Figure E6.8). Obtain the deflection of the beam and calculate the fixed
end moments.

y

xBA

P
a

L

Figure E6.8

[Solution] This is a statically indeterminate problem. The reaction forces at A and B cannot
be solved by static equilibrium. At both ends unknown bending moments and shear forces
exist. Before these forces are found, the general expression of bending moment is expressed in
terms of these unknown reactions that can be determined subsequently by introducing support
conditions.

RA RB

MA
MB

P
a

L

Assume that the two reaction forces at A are, respectively, RA and MA. From Equation (6.5), the
general expression of bending moment is:

M�x�= RAx+MA 
x−0�0−P 
x−a� = RAx+MA−P 
x−a�
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From Equation (6.1):

EI
d2y

dx2
=−M�x�=−RAx−MA+P 
x−a�

Integrating once:

EI
dy

dx
=−RA

2
x2−MAx+

P

2

x−a�2+C1 (E6.8a)

At the fixed end:

x = 0

dy

dx
= 0


Thus from Equation (E6.8a):

C1 = 0

Integrating twice:

EIy =−RA

6
x3− MA

2
x2+ P

6

x−a�3+C2 (E6.8b)

Again at the fixed end:

x = 0
 y = 0

From Equation (E6.8b):

C2 = 0

The expression of deflection in terms of the unknown reaction forces at A is:

y�x�= 1
EI
�−RA

6
x3− MA

2
x2+ P

6

x−a�3� (E6.8c)

The reaction force, RA, and the fixed end moment, MA, can be determined through the intro-
duction of the support conditions at B.

At x = L:

dy

dx
= 0 and y = 0

From Equation (E6.8a):

0=−RA

2
L2−MAL+

P

2
�L−a�2
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From Equation (E6.8b):

0=−RA

6
L3− MA

2
L2+ P

6
�L−a�3

Solving the above simultaneous equations in terms of RA and MA yields:

MA =−Pa�L−a�2

L2

RA = P�L−a�2

L3
�2a+ L�

Once MA and RA are found, MB and RB can be easily obtained by considering the equilibrium of
the entire beam, which are, respectively:

MB =−P�L−a�a2

L2

RB =
Pa2

L3
�3L−2a�

Substituting the above solutions into Equation (E6.8c) yields the deflection of the beam.

6.5 Conceptual questions

1. Describe what is meant by a ‘simply supported’ support.
2. Describe what is meant by a ‘fixed end’ support.
3. What is the support condition of a free end?
4. What are deflection, slope and curvature of a beam?
5. How are deflection, slope and curvature related to each other for a beam in bending?
6. What is the difference between axial stiffness and flexural rigidity of a member?
7. What is the difference between torsional stiffness and flexural rigidity of a member?
8. Under what condition will a beam bend in to a circular arc?
9. Is the curvature of a beam zero at the location where bending moment is zero?

10. Does maximum deflection always occur at the position where slope is zero?
11. Does maximum deflection always occur at the position where bending moment is

maximum?
12. If the integration method is applied to Equation (6.1) to find deflection of the beam shown

in the figure below, how many constants of integration in total are to be determined from
imposing support and continuity conditions? And what are the conditions?

x

l l l l l

Figure Q6.12

13. If two beams have the same length and flexural rigidity and are subjected to the same
external loads, are the deflections of the two beams identical, and why?
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6.6 Mini test

Problem 6.1: The cantilever shown in Figure P6.1 has a rectangular cross-section. With all
the conditions staying the same, except that the depth of the beam is doubled, complete the
following statements:

Figure P6.1

(a) The maximum normal stress is now _____ times the maximum normal stress in the
original beams.

(b) The maximum shear stress is now _____ times the maximum shear stress in the
original beams.

(c) The maximum deflection is now _____ times the maximum deflection of the original
beam.

(d) The maximum slope is now _____ times the maximum slope of the original beam.

Problem 6.2: Calculate the mid-span deflection of the beams shown in Figure P6.2 using the
superposition method and the solutions from Table 6.2.

q

L

q

(a)

(b)

L /2

L

Figure P6.2

Problem 6.3: Figure P6.3 shows a horizontal beam freely supported at its ends by the free
ends of two cantilevers. If the flexural rigidity, EI, of the cantilevers is twice that of the beam,
calculate the deflection at the center of the beam.

P

3 × (L /3)

P

L /2 L /2

Figure P6.3
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Problem 6.4: Determine the deflection along the beam, and the magnitude of deflection at D
of the beam shown in Figure P6.4. The flexural rigidity (EI) is 1�0MN m2.

2 m 2 m 2 m

10 kN 10 kN
3 kN/m

A B DC

Figure P6.4

Problem 6.5: Determine the deflection curve of the statically indeterminate beam shown in
Figure P6.5. The beam has a constant EI.

BA

q

L

Figure P6.5



7 Complex stresses

In a practical design, a structure is usually subjected to a combination of different types of
loading that generate different types of stresses within the structure. For example, the stress
field in a beam–column joint is very complex, with combinations of bending, shearing and
contact stresses (Figure 7.1(a)). If a cut (plane) is taken through a point, the stress on the plane
is usually different to the stress on a different plane through the same point, not just in terms
of magnitude but also direction. On an arbitrary plane through a point, a general (� ) stress can
always be resolved into three independent components that are perpendicular to each other
(Figure 7.1(b)). The three components include a normal stress (�n), which is perpendicular to the
plane, two shear stresses (�1 and �2), which are parallel to the plane and perpendicular to each
other. The stresses at a point inside the joint are best presented by the stresses acting on an
infinitesimal cubic element taken around the point. The element has six faces (planes) that are

(a)

τ2

τ1

σn

σ

(b) (c)

z

x
y

Figure 7.1
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either perpendicular or parallel to each other. On each of the faces there are three independent
stresses, including two shear stresses and a normal stress.

Figure 7.2 shows all the stresses at a point in a material, which is sufficient and necessary to
represent the state of stress at the point.

σzz

τzx

τxz

σxx

τxy

τyx

σyy

τzx

τyz

x

y

z

Figure 7.2

• When a structure is subjected to external loads, the state of stress is, in general,
different at different points within the structure.

• At a point in the structure, the stress in one direction is usually different to the stress
in a different direction.

• State of stress (Figure 7.1(c)) shows stresses acting on six different planes at a point.
Therefore, when we say that we know a stress, it means that we know not only the
magnitude and direction of the stress, but also the plane on which the stress acts.

• Since the cubic element has infinitesimal dimensions in the three co-ordinate directions,
the normal stresses acting on any two faces that are parallel to each other are equal
but in opposite directions. On any two planes that are perpendicular to each other, the
shear stresses perpendicular to the intersection of the two planes are equal, but in an
opposite sense, i.e., are either towards or away from the intersection line. At a point,
therefore, there are only six independent stresses, i.e., �xx , �yy , �zz , �xy �= �yx�, �xz�= �zx�

and �yz�= �zy � (Figure 7.2).
• At any point within a material, if the two shear stresses are zero on a plane, this

plane is called principal plane. The normal stress acting on the principal plane is called
principal stress, and its direction is called principal direction. If a cubic element is
chosen such that all the faces of the cube are free of shear stresses, the element is
called principal element.

7.1 Two-dimensional state of stress

In some cases, the stresses relative to a particular direction are sufficiently small compared to
the stresses relative to the other two directions. Typical example problems include stresses in
a thin plate subjected to in-plane loadings (Figure 7.3(a)) and in a thin-walled vessel under
internal pressure (Figure 7.3(b)) or torsion (Figure 7.3(c)). Suppose that the small stress is related



132 Complex stresses

σx

τxy

τyx

σy

σx

τxy

τvx

σy

(a) Biaxial tension

σy

σy

σx

σx
Q

Q

(b) Internal pressure

τxy

(c) Torsion

T

Q

Q

Figure 7.3

to the z direction and is ignored, the three-dimensional state of stress can be reduced to a
two-dimensional one. Since the remaining stresses lie in a plane, the simplified two-dimensional
problems are called plane problems. For the thin plate subjected to in-plane loads, Figure 7.3(a)
shows the two-dimensional state of stress. For a thin-walled cylinder subjected to internal
pressure or torsion, the states of stress are shown by Figures 7.3(b) and 7.3(c).

In Figure 7.3, the normal stresses (�x and �y have a single subscript index that indicates the
coordinate axis the stresses are parallel to. The first subscript index of a shear stress (�xy or �yx )
denotes the direction of the normal of the plane on which the stress acts, while the second
index denotes the axis to which the shear stress is parallel. Since the two-dimensional element
is infinitesimal, �xy is numerically equal to �yx .

7.1.1 Sign convention of stresses

The stresses shown in Figure 7.3 are all defined as positive in the chosen coordinate system,
where the following sign conventions are followed:
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• Tensile and compressive stresses are always defined, respectively, as positive and
negative.

 + + – –

• Positive shear stresses are defined the same as the positive shear forces defined in
Section 4.4.

+ + – –

+ –

7.1.2 Analytical method

Once the stress components that align with a typical x–y coordinate system are found
(Figure 7.2), transforming the stresses into another coordinate system is sometimes necessary.
Two key reasons that we may want to calculate stresses in a different coordinate system include
the following:

• To determine the stress in an important direction, for example, stresses normal and
parallel to the plane of a weld (Figure 7.4(b));

• To determine the maximum normal stress or maximum shear stress at a point. These
stresses may not necessarily align with the chosen coordinate directions.

(a) Stresses on an arbitrarily inclined plane
To further understand the stresses on an arbitrarily inclined plane (cut) through a point in
a material, consider the two elements taken around the point in Figure 7.4.

Since the elements are taken at the same point, we might take them for the same
state of stress, but measured in a different coordinate system. The new coordinate system,
x′–y′, is defined by a rotation � of both the coordinate axes from their original direc-
tions (Figure 7.5). The relationship between the states of stress in terms of the original
system and the rotated system can be best presented by considering the equilibrium
of the wedge of material (Figure 7.6) taken from Figure 7.5(b). The normal stress, ��,
and shear stress, ��, acting on the inclined plane are, respectively, the normal stress,
�x′ , and shear stress, �x′y ′ , in the rotated coordinate system, while the stresses acting
on the vertical and horizontal sides of the wedge are identical to those acting on the
vertical and horizontal sides of the element (Figure 7.5(a)) in the original coordinate
system.
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Weld
P

P

(a)

Weld
P

τθ

(b)

Figure 7.4

σy

τyx

τxy

τyx

τxyσx

σy

σx
θ

wedge

σy ′ σx ′

τy ′x ′
τx ′y ′

y ′

x ′

(a) (b)

Figure 7.5

x ′
y ′

σy

σx

τyx

τxy

τθ

σθ

x

θ

Figure 7.6
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The equilibrium of the wedge yields:

�� = �x cos
2 �+�y sin

2 �− �xy sin2�

= �x +�y

2
+ �x −�y

2
cos2�− �xy sin2� (7.1)

�� =
(�x −�y

2

)
sin2�+ �xy cos2�

where an anticlockwise angle from the x-axis is defined as positive.

(b) Principal stresses
From Equation (7.1), the stresses on an inclined plane change as the value of � changes.
It means that on different planes taken by cutting through the point the stresses are
generally different. It is natural to think that there are special planes on which the normal
stress reaches either maximum or minimum (maximum compressive stress) algebraically.
The maximum and minimum normal stresses are both called principal stresses. When a
normal stress is either maximum or minimum, the plane on which the stress acts is always
free of shear stress. In a two-dimensional stress system, there are two principal stresses,
that is, the maximum and the minimum normal stresses at a point, as shown in Figure 7.7.

The principal stresses can be calculated as follows:

�max = �1

= 1
2
���x +�y�+

√
��x −�y�

2+4�2xy �

�min = �2

= 1
2
���x +�y�−

√
��x −�y�

2+4�2xy �

(7.2)

(c) The directions of principal stresses
The angle between a principal stress and the x-axis can be calculated as follows:

tan2� = −2�xy
�x −�y

� = 1
2
tan−1

( −2�xy
�x −�y

) (7.3)

Since the two principal stresses are perpendicular to each other, the direction of the second
principal stress is �+90�.

θ2

σ2 σ1

σ2σ1

σ1

θ1

σ2

σ2

σ1

σy

τxy

σx

σy

τyx

τxyσx

Figure 7.7
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tension

compression

(a)

σy

τyx

τxy

τyx

τxy

σx

σy

X
o

Y

σx

(b)

Figure 7.8

In a plane problem, there are two principal stresses (Equation (7.2)) and two associated
directions. The easiest way to relate the stresses to their respective directions is based on
the following simple observation.

In Figure 7.8, the shear stresses �xy generates tension in one diagonal direction and
compression in the other, which suggests that combined with actions of �x and �y , the
normal stress in the direction of the tension diagonal is more tensile or larger than that in
the direction of the compression diagonal. Hence, it can be concluded that the direction of
�1 is related to where the shear stresses are pointing to.

At a point in a material, a normal stress is a principal stress if:

• the stress is either the maximum tensile stress or the maximum compressive stress
at the point;

or

• the plane on which the normal stress acts is free of shear stresses. The plane is
one of the principal planes.

(d) Maximum shear stress
Following the same argument as for the existence of maximum normal stresses, there
exist special planes on which shear stress reaches maximum or minimum. (They have equal
magnitudes in an opposite sense.) Figure 7.9 shows a concrete cylinder under compression.
The cylinder fails due to maximum shearing at about 45� to the axial of compression. The
cylinder may fail along the other diagonal direction under the same compression due to an
equal shear stress of opposite sense. By observation, the plane perpendicular to the axial
direction is a principal plane since there is no shear stress acting on this plane. The maximum
shear stress acts on the plane that is 45� away from the principal plane. From Equation (7.1),
themaximum shear stress can be obtained by replacing�x and�y with�1 and�2, respectively:

�max =
�1−�2

2
(7.4a)

and from Equation (7.2):

�max =
1
2

√
��x −�y�

2+4�2xy (7.4b)
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Direction of σ2

45°

Figure 7.9

7.1.3 Graphic method

Mohr’s circle illustrates principal stresses and stress transformations via a graphical format,
that is, a graphic representation of Equations (7.1–7.4). The circle is plotted in a plane
coordinate system where the horizontal axis denotes normal stress. The vertical coordinate
denotes the shear stress on the same plane (Figure 7.10). While plotting a Mohr’s circle
a sign convention, for example, the one defined in Section 7.1.1, must be followed.
Here we take tensile stresses and shear stresses that would turn an element clockwise as
positive. Figure 7.10 shows how the stresses acting on an element are related to a Mohr’s
circle.

The two principal stresses are shown by the � coordinates of the two intersections of
the circle with the horizontal axis (where shear stresses are zero). The vertical coordinates
of either the highest or the lowest point on the circle denote the maximum magnitude of
shear stress that is also equal to the radius of the circle. If the state of stress at a point is
known, that is, �x , �y and �xy are known, the following steps can be followed to plot a Mohr’s
circle:

2θ

θ

σθ

τyx = −τxy

B : (σy 
, −τxy)

A: (σx 
, τxy)

2
σAvg =

σy

σ2

σ1

σ

σAvg

τmax
τxy

τxy

σx

σx + σy

Figure 7.10



138 Complex stresses

• Set up a co-ordinate system where the horizontal axis is the normal stress axis and the
vertical axis is the shear stress axis; positive directions of the axes take upwards and
to the right.

• Locate two points, A and B, related to, respectively, the stresses on the right and upper
faces of a state-of-stress element, with respective coordinates (�x
 �xy � and (�y
−�xy ),
in the �–� co-ordinate system and connect the two points by a straight line. The sign
convention defined in Section 7.1.1 must be followed to locate the two points. The
intersection of the straight line with the � -axis is marked ‘O’ and is at a distance of
�ave = ��x +�y�/2 away from the origin.

• With its centre at ‘O’, draw a circle passing through points A and B.
• Measure � coordinates of the two intersections of the circle with the � -axis to obtain

the two principal stresses.
• Measure the radius of the circle to obtain the maximum shear stress.
• To determine the magnitudes of the stresses acting on an inclined plane, �� away from

the right-hand-side face, measure an angle of 2�� from OA and take the coordinates
of the intersection with the circle.

• The horizontal and vertical coordinates of the intersection are, respectively, the normal
and shear stresses on the inclined plane.

7.2 Key points review

7.2.1 Complex stress system

• At a point in a material, there are six independent stress components, including three
normal stresses and three shear stresses.

• In a two-dimensional case, there are three independent stresses, two normal stresses
and one shear stress, at a point of the material.

• A stress usually varies from point to point.
• A stress is uniquely defined by the following three properties:

– magnitude
– direction
– plane (cross-section/cut) on which the stress acts.

• Without knowing any of the three, the stress is not completely defined.
• Principal stresses are normal stresses and include both maximum and minimum

compressive stresses.
• In a three-dimensional stress system, there are three principal stresses; while in a

two-dimensional system, there are two principal stresses.
• Principal stresses are always perpendicular to each other.
• The plane on which a principal stress acts is free of shear stresses.
• Maximum shear stress is equal to half of the maximum difference between principal

stresses.
• Maximum shear stress is always 45� away from a principal stress.
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7.2.2 Mohr’s circle

• The largest and smallest horizontal coordinates of the circle are, respectively, the two
principal stresses �1 and �2.

• The maximum shear stress is numerically equal to the length of the radius of the circle
and also equal to ��1−�2�/2.

• An angle difference � between two planes through a point is represented by a difference
of 2� between the two locations relative to the stresses on the two planes along the
Mohr’s circle.

• A normal stress equal to ��x +�y�/2 acts on the planes of maximum shear stresses.
• If �1 = �2, Mohr’s circle degenerates into a point, for which no shear stresses develop

at the point.

7.3 Examples

EXAMPLE 7.1
At a point in a masonry structure, the stress system caused by the applied loadings
is shown in Figure E7.1(a). Calculate the magnitudes and orientations of the principal
stresses at the point. If the stone, of which the structure is made, is stratified and is weak
in shear along the planes parallel with the A–A and the allowable shear stress of these
planes is 2.3MPa, is this stress system permissible?

σx  = 10 MPa
σx  = 10 MPa

σy  = 2 MPa

τ  = 3 MPa

A

τ = 3 MPa

30°

A

Figure E7.1(a)

[Solution] This is a question asking for calculation of principal stresses and stresses on an inclined
plane. The state of stress at the point is given. The principal stresses and the shear stress on the
stratified plane can be obtained by application of Equations (7.1–7.3) or by use of Mohr’s circle
method.

(a) Analytical solutions:
Following the sign conventions
�x =−10MPa
 �y =−2MPa
 �xy =−3MPa (sign convention in Section 7.1.1)
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From Equations (7.2) and (7.3):

�1 =
1
2
���x +�y�+

√
��x −�y�

2+4�2xy �

= 1
2
��−10−2�+

√
�−10+2�2+4×32�=−1�0MPa

�2 =
1
2
���x +�y�−

√
��x −�y�

2+4�2xy �

= 1
2
��−10−2�−

√
�−10+2�2+4×32�=−11�0MPa

tan2� = −2�
�x −�y

= −2× �−3�
−10− �−2�

=−3
4

� =−18�43� (clockwise from the x-axis)

18.43°

Figure E7.1(b)

The above calculations suggest that one of the principal stresses acts in the direction �=−18�43�

away from the x-axis. Judging by the distortion of the element due to the applied shear stresses
(Figure E7.1(b)) and by common sense, it is obvious that the principal stress in the direction
of � = −18�43� is more compressive than the other principal stress is. Hence, the principal
stress acting along � =−18�43� is the minimum principal stress, �2 =−11MPa. The maximum
principal stress, �1 =−1�0MPa, is in the direction perpendicular to �2. The principal directions
at the point are shown below:

18.43°
σ2 = −11 MPa

σ1 = −1.0 MPa

Figure E7.1(c)

The shear stress along plane A–A is calculated from Equation (7.1):

�� =
(�x −�y

2

)
sin2�+ �xy cos2�

�−30� = −
(�x −�y

2

)
sin60� + �xy cos60

�
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τ−30°

σy = 2 MPa

σx = 10 MPa

τ = 3 MPa

A

A

30°

−30°

=−�
−10+2

2
�

√
3
2

+ �−3�× 1
2
= 1�96MPa

�−30� < 2�3MPa

Hence, the stress system is permissible.

(b) Mohr’s circle solution
According to the sign convention we have followed, the stress system shown in Figure E7.1(a)
has ��x
 �xy � = �−10MPa
−3MPa� on the right-hand-side vertical plane and ��x
−�xy � =
�−2MPa
3MPa� on the upper horizontal plane, respectively. Thus, the Mohr’s circle can be
plotted by following the steps described in Section 7.1.3:

• Locate the two points with coordinates A = �−10
−3� and B= �−2
3�, respectively, in the
�–� plane. Point A represents the right-hand side of the element and Point B represents the
top side of the element.

• Connect the two points by a straight line to establish the diameter of the circle. The inter-
section with the � -axis is the average of the two normal stresses and marked ‘O’.

A: Stresses on the
right-hand-side
vertical plane
(–10, –3)

σ

τ

2

σx + σy

O

B: Stresses on the top
horizontal plane (–2, 3)

• With its centre at ‘O’, draw a circle passing through the two points.
• Measure � coordinates of the two intersections of the circle with the � -axis, where shear

stresses are zero, to obtain the two principal stresses �1 and �2.
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B

A

σ2

σ1

2θ

τmax

Each division in the figure is equivalent to 2MPa. Therefore:

�1 = 0�5 division=−1MPa

�2 = 5�5 division=−11MPa

• The angle between the right-hand-side and the upper-side planes of the element (planes A
and B) is 90�, while the associated points in the circle is 180� away. This suggests that for
two planes having an angle of �, the points relative to these planes on the Mohr’s circle are
2� away from each other.
The clockwise angle, 2�, between plane A and the second principal plane is:

tan2� = 1�5 division
2 division

= 3
4
= 0�75

� = 1
2
arctan �0�75�= 18�43�

The angle between the normal stress on plane A (the vertical plane on the right-hand side
of the element) and the second principal stress is, therefore, 18�43� clockwise.

• Measure the radius of the circle to obtain the maximum shear stress:

�max = 2�5 division= 5MPa

or take

�max =
��1−�2�

2
= −1+11

2
= 5MPa

The points associated with the maximum or minimum shear stress are 90� away from the
points associated with the two principal stresses on the circle. The maximum shear stress is
therefore 45� away from a principal plane.

• Shear stress on the plane 30� clockwise away from the right-hand-side vertical planes.

Point A represents the vertical plane. The shear stress on the plane 30� away from it can
be measured from the above figure, which is equal to 1.96MPa.
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Plane 30° clockwise
away from plane A

B

A

σ2

σ1

τmax

2 × 30°

EXAMPLE 7.2
Consider the bar shown in Figure E7.2 under torsional loading. Determine the principal
stresses and their orientation.

τ

Figure E7.2

[Solution] The state of stress of the shaft is determined by the shear stress caused by the torque.
On the element taken, there are no normal stresses.

Thus:

�x = �y = 0
 �xy = �

Calculating the magnitudes of �1 and �2 (Equation (7.2)):

�1 =
�x +�y

2
+
√(�x −�y

2

)2

+ �2xy = �

�2 =
�x +�y

2
−
√(�x −�y

2

)2

+ �2xy =−�

Calculate the orientation of these principal stresses (Equation (7.3)):

tan2� = −2�xy
�x −�y

= −�

0
=−∝

2� =−90�

�1 =−45�

�2 =−45� +90� = 45�
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45°

σ1

σ2

The direction of �1 is 45� away from the x-axis clockwise, which can be judged by the above-
sketched deformation, where a tensile strain is observed in this direction.

EXAMPLE 7.3
A thin-walled cylinder has an internal diameter of 60mm and a wall thickness of 1.5mm.
Determine the principal stresses at a point on the outside surface of the generator
when the cylinder is subjected to an internal pressure of 6MPa and a torque, about its
longitudinal axis, of 1.0 kN m. If the cylinder is made from plates that are welded along
the 45� seams, calculate the normal and shear stresses along the seams.

t

Hoop stress σy

d

A Axial stress 

σx

Figure E7.3

[Solution] The state of stress is defined by the axial and hoop stresses caused by the internal
pressure and the shear stress due to the applied torque. The pressure p acting on the end plate
area A is equivalent to an axial force of:

Px = p×A�rea�= p× �
�d2

4
�

and the hoop force, Py , is equal to:

Py Py
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Py = pd/2

For the thin-walled cylinder, the cross-sectional area can be calculated approximately by �dt.
For the infinitesimal element taken at A (Figure E7.3), the hoop stress is:

�y =
Py

t
= pd

2t
= 6MPa×60×10−3 m

2×1�5×10−3 m

= 120MPa

The axial stress is:

�x =
Px
�dt

= pd

4t
= 6MPa×60×10−3 m

4×1�5×10−3 m

= 60MPa

Since the wall of the cylinder is thin, that is, t << d, the torsional constant is calculated
approximately as:

J = �

32
�D4−d4�= �

32
d4�

D4

d4
−1�= �

32
d4��1+ 2t

d
�4−1�≈ �t

4
d3

where D is the outside diameter of the cylinder. Considering D≈ d, the shear stress due to the
torque is then:

�xy =
T�d/2�

J
= 1000N m×60×10−3 m/2

��1�5×10−3 m��60×10−3 m�3/4

= 118MPa

From Equation (7.2):

�1 =
1
2
���x +�y�+

√
��x −�y�

2+4�2xy �

= 1
2
��60+1200+

√
�60−120�2+4×1182�= 212MPa

�2 =
1
2
���x +�y�−

√
��x −�y�

2+4�2xy �

= 1
2
��60+1200�−

√
�60−120�2+4×1182�=−32MPa

The maximum shear stress is (Equation (7.4a)):

�max =
�1−�2

2
= 212− �−32�

2
= 122MPa

Along the 45� seams (Equation (7.1)):
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�� = �x cos
2 �+�y sin

2 �− �xy sin2�

= 60MPa× cos2 45� +120MPa× sin2 45� −118MPa× sin90�

= −28MPa

�� =
(�x −�y

2

)
sin2�+ �xy cos2�

=
(
60MPa−120MPa

2

)
sin90� +118MPa× cos90�

= −30MPa

EXAMPLE 7.4
The cross-section of a beam, as shown in Figure E7.4, is subjected to a bending moment
of M = 10kN m and a shear force of V = 120kN. Calculate the principal stresses at points
1, 2, 3 and 4 respectively.

60 mm

1

2

3

              4

Neutral axis

25 mm

100 mm

Figure E7.4

[Solution] The states of stress at the points are determined by the normal stress due to the
applied bending moment and the shear stress due to the applied shear force. At 1 and 4, the
shear stress is zero, while at 2 the normal stress is zero. At 3 there is a combined action of
normal and shear stresses. The states of stress of the four points are, respectively, as follows:

1 τ
τ

2 τ3 τ4

Calculating the principal stresses of the 4 points is, therefore, a direct application of Equation (7.2)
to the above four states of stress.

The second moment of area of the cross-section is:

I = 1
12

bh3 = 1
12

×60×10−3 m× �100×10−3 m�3 = 500×10−8 m4

At location 1, the normal stress due to bending (Equation (5.1a)):

� = My

I
= 10×103 N m×50×10−3 m

500×10−8 m4
= 100×106N/m2 �Compression�
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At 1, since there is no shear stress, the above normal stress is one of the principal stresses. Thus:

�1 = 0

�2 =−100MPa

At location 2, there is no normal stress (neutral axis). The shear stress is calculated by (Example 5.5):

� = 3V
2A

= 3×120×103 N
2×60×100×10−6 m2

= 30×106N/m2 = 30MPa

From Equation (7.2):

�1 =
�x +�y

2
+
√(�x −�y

2

)2

+ �2xy = 0+
√
0+ �2 = � = 30MPa

�2 =
�x +�y

2
−
√(�x −�y

2

)2

+ �2xy = 0−
√
0+ �2 =−� =−30MPa

At location 3 both normal and shear stresses exist. The normal stress due to bending is:

� = My

I
= 10×103 N m×25×10−3 m

500×10−8m4
= 50×106N/m2 �tension�

and the shear stress due to the applied shear force is (Equation 5.5):

25 mm3

Neutral axis

� = VS∗

bI
= 120×103 N×60×25×37�5×10−9 m3

60×10−3 m×500×10−8 m4

= 22�5×106 N/m2

From Equation (7.2):

�1 =
�x +�y

2
+
√(�x −�y

2

)2

+ �2xy

= 50×106Pa+0
2

+
√
�
50×106Pa−0

2
�2+ �2 = 58�6MPa

�2 =
�x +�y

2
−
√(�x −�y

2

)2

+ �2xy

= 50×106Pa+0
2

−
√
�
50×106Pa−0

2
�2+ �2 =−8�6MPa
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At location 4, there is no shear stress and the normal stress due to bending at the point is one
of the principal stresses:

� = My

I
= 10×103 N m×50×10−3 m

500×10−8 m4
= 100×106 N/m2 �tension�

Thus:

�1 = 100MPa

�2 = 0

7.4 Conceptual questions

1. What is meant by ‘state of stress’ and why is it important in stress analysis?
2. The state of stress at a point of a material is completely determined when

(a) the stresses on three different planes are specified;
(b) the stresses on two different planes are specified;
(c) the stresses on an arbitrary plane are specified;
(d) none of the above statement is correct.

3. Can both the square elements shown in Figure Q7.3 be used to represent the state of
stress at the point of the beam? If yes, which one do you prefer to use and why?

Figure Q7.3

4. Consider a shaft with a constant circular section. If it is subjected to torsion only, at any
point within the shaft, normal stress is always zero. (Y/N).

5. What is meant by ‘principal stresses’, and what is the importance of them?
6. How many principal stresses are there at a point in a two-dimensional stress system?
7. What is meant by ‘principal planes’, and what is the value of shear stress on these

planes?
8. If the principal stresses at a point are known, how can the maximum shear stress at the

point be calculated?
9. On the maximum shear stress plane, what values do the normal stresses take?

10. What is the angle between a principal plane and a maximum shear stress plane? Use
Mohr’s circle to illustrate this.

11. From a Mohr’s circle, why do the intersections with the horizontal axis represent the
principal stresses at a point?

12. From a Mohr’s circle, why does the radius of the circle represent the maximum shear stress
at a point?
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13. Use Mohr’s circle to illustrate the equality of shear stresses on two planes which are
perpendicular to each other.

14. The state of stress at a point is shown in Figure Q.7.14. The angle between the x-axis and
the maximum normal stress is likely to be in the direction of:

x

Figure Q7.14

(a) 13�5�

(b) −96�5�

(c) 76�5�

(d) −13�5�.

(Positive angle is defined as anticlockwise from the x-axis)
15. In Equation (7.1), what conclusion can you draw from the sum of �1 and �2?

7.5 Mini test

Problem 7.1: Among the three states of stress shown in the Figure P7.1, which two are
equivalent?

τ

τ

τ

τ

τ

(a) (b) (c)

Figure P7.1

Problem 7.2: A thin-walled hollow sphere of radius R with uniform thickness t is subjected
to an internal pressure p. Determine and discuss the state of stress of a point on the outside
surface. Is there any shear stress acting at the point? Explain why.

t

2R

Figure P7.2
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Problem 7.3: Match the states of stress shown in Figure P7.3(b) with the points shown on the
two beams in Figure P7.3(a):

A B               C 

(1)

(a)

(2) (3)

D                  E

(4) (5)

(b) 

Figure P7.3

Problem 7.4: At point P on the free edge of a plate, oriented as shown in the Figure P7.4,
the maximum shear stress at the point is 4000kN/m2. Use Mohr’s circle to find the principal
stresses and �x at the point in the x–y system shown in the figure:

y

x

4
3

P

Figure P7.4

Problem 7.5: A simply supported beam of rectangular cross-section is loaded as shown in
Figure P7.5. Determine the states of stress of points 1–5 that are equally spaced across the
depth of the beam. Calculate also the principal stresses at these points.

P = 256 kN

500 mm500 mm 120 mm

200 mm

250 mm250 mm

Figure P7.5



8 Complex strains and strain
gauges

From Chapter 7, at a point within a three-dimensional material, there are usually six independent
stresses as shown in Figure 8.1, that is:

• Three normal stresses: �x , �y and �z

• Three shear stresses: �xy , �xz and �yz

At the same point, due to the action of these stresses, there exist six independent strains,
that is:

• Three normal strains: �x , �y and �z
• Three shear strains: �xy , �xz and �yz

For linearly elastic and isotropic materials, the six stresses and the six strains satisfy Hooke’s law
as follows:

�x =
�x

E
−	

�y

E
−	

�z

E

= 1
E

[
�x −	��y +�z�

]

x
y

z

Figure 8.1
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�y =
�y

E
−	

�x

E
−	

�z

E

= 1
E

[
�y −	��x +�z�

]
�z =

�z

E
−	

�x

E
−	

�y

E

= 1
E

[
�z −	��x +�y�

]
(8.1a)

�xy =
�xy

G

�xz =
�xz
G

�yz =
�yz

G

(8.1b)

where E, G and 	 are, respectively, Young’s modulus, shear modulus and Poisson’s ratio of the
material.

In a two-dimensional stress system, where one of the normal stresses, for example, the
normal stress in the z direction, is zero, or in most cases negligible, and the shear stresses acting
on this particular plane are also zero, the generalized Hooke’s law of Equation (8.1) is reduced
to the following:

• Strains in terms of stresses:

�x =
�x

E
−	

�y

E
= 1

E

[
�x −	�y

]
�y =

�y

E
−	

�x

E
= 1

E

[
�y −	�x

]
�xy =

�xy

G

(8.2a)

• Stresses in terms of strains:

�x =
E

1−	2
[
�x +	�y

]
�y =

E

1−	2
[
�y +	�x

]
�xy = G�xy

(8.2b)

Equation (8.2) represents a two-dimensional complex strain system (Figure 8.2) that is directly
related to the two-dimensional complex stress system discussed in Section 7.1.

The collective information of �x , �y and �xy at a point within a two-dimensional system is
termed as state of strain at that point.

In Figure 8.2, if the shear strain, �xy , is zero (no distortion), the two normal strains are called
principal strains and designated as �1 and �2, where �1 > �2. The two principal strains are
associated with the two principal stresses (Figure 8.3) discussed in Chapter 7.
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x

y

εx

εy γxy

Figure 8.2

σ2

σ1 ε1ε1σ1

σ2 ε2

ε2

Figure 8.3

For the principal stresses and principal strains shown in Figure 8.3, Hooke’s law (8.2) is reduced
to the following:

• Strains in terms of stresses:

�1 =
�1

E
−	

�2

E
= 1

E
��1−	�2�

�2 =
�2

E
−	

�1

E
= 1

E
��2−	�2�

(8.3a)

• Stresses in terms of strains:

�1 =
E

1−	2
��1+	�2�

�2 =
E

1−	2
��2+	�1�

(8.3b)

where both shear stress and shear strain are zero.

• When a structure is subjected to external loads, the state of strain is, in general,
different at different points within the structure.

• At a point in a structure, the strain in one direction is usually different to the strain in
a different direction.

• State of strain (Figure 8.2) shows two normal strains and a shear strain at a point.
When a normal strain is known, it means that not only the magnitude, but also the
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direction of the strain are known. The shear strain (change in a right angle) is always
in consistence with the shear stresses at the point.

• The maximum and minimum normal strains are called principal strains. They are,
respectively, associated with the maximum and minimum principal stresses.

• The shear strain related to the maximum shear stress is the maximum shear strain.

8.1 Strain analysis

In most cases, the purpose of a strain analysis is to carry out a stress analysis. This is particularly
true when the analysis is based on experiments. Usually, it is much easier and more straightfor-
ward to measure strains (deformation) than stresses by experiments. The measured strains can
then be converted to stresses on the basis of Hooke’s law. Like the stress analysis discussed in
Chapter 7, the strain analysis here again deals with the following two issues:

• To determine the strain in relation to an important direction based on the measured
strains aligning with a chosen co-ordinate system;

• To determine the maximum normal strain or maximum shear strain at a point. These
strains may not necessarily align with the chosen coordinate directions.

(a) Strains transformation
The two states of strain are taken at the same point of a material (Figure 8.4). By comparing
Figure 8.4 with Figure 7.5, the strains in the x–y and the x′–y′ coordinate systems should have a
similar relationship as that for stresses. Considering the fact that the shear strain, �xy , is related
to a pair of shear stresses, �xy and �yx , only �xy/2 will appear in the equation as an equivalent
to the shear stress �xy . Thus:

Can be obtained by

replacing σx , σy and

τxy with εx , εy and

γxy /2 respectively,

in Equation (7.2)

�� = �x′ = �x cos
2 �+�y sin

2 �− �xy

2
sin2�

= �x +�y

2
+ �x −�y

2
cos2�− �xy

2
sin2�

��

2
= �x′y ′

2
=

(�x −�y

2

)
sin2�+ �xy

2
cos2� (8.4)

or

�� = �x′y ′ =
(
�x −�y

)
sin2�+�xy cos2�

εy

εxεx

εy

γxy

(a)

εy ′ εy ′x ′
εx ′

θ

y ′
x ′

(b)
Figure 8.4
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where an anticlockwise angle from the x-axis is defined as positive.

(b) Principal strains and their directions
Following the same argument for strain transformation, the principal strains and their directions
can be deducted from the principal stress equations (Equations (7.2) and (7.3)):

Can be obtained by

replacing σx, σy and τxy

with εx, εx and γxy /2,

respectively, in Equation

(7.2)

�1 =
1
2
���x +�y�+

√
��x −�y�

2+�2
xy �

�2 =
1
2
���x +�y�−

√
��x −�y�

2+�2
xy �

(8.5)

tan2� = −�xy

�x −�y

� = 1
2
tan−1�

−�xy

�x −�y
�

(c) Maximum shear strain
Again with the same argument, from Equation (7.4):

�max

2
= �1−�2

2

or

�max = �1−�2

�max

2
= 1

2

√
��x −�y�

2+�2
xy

(8.6)

or

�max =
√
��x −�y�

2+�2
xy

8.2 Strain measurement by strain gauges

Experimental strain and stress analysis is an important tool in structural testing and design, where
deformations or strains are usually measured and then converted to stresses. Strain gauges are
by far the most commonly adopted method of measuring strains.

When a strain gauge is mounted on the surface of a structural member subject to deformation,
the gauge deforms with the structure. The electrical resistance of the gauge changes as the gauge
deforms. This change is recordedby the strainmeter and subsequently converted to the real normal
strain in the longitudinal direction of the gauge at the point of measurement (Figure 8.5).

Strain
meter

Figure 8.5
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45°

b

a

c

45°

Figure 8.6

• If the normal strain in a particular direction at a surface point of a material is required,
a single strain gauge is mounted along the required direction at the point.

• If the directions of principal stresses at a surface point are known in advance, two
independent strain measurements in the directions of the principal stresses are needed
to obtain the principal strains and stresses.

• If the directions of principal stresses at a surface point are unknown in advance, a
strain gauge rosette, which is an arrangement of three closely positioned gauge grids
and separately oriented, is needed to measure the normal strains along the three
different directions that are required to determine the principal strains and stresses.

The strain gauge rosette shown in Figure 8.6 is the most commonly used type of rosette and is
called rectangular rosette.

When a rectangular rosette is mounted on the surface point of a material, the strains along the
a, b and c directions of the material at the point are measured as �a , �b and �c, respectively. These
measurements are then introduced into the following equations to determine the principal strains:

�1 =
1
2
��a+�c�+

1√
2

√
��a−�b�

2+ ��c−�b�
2

�2 =
1
2
��a+�c�−

1√
2

√
��a−�b�

2+ ��c−�b�
2

(8.7a)

The directions of the principal strains can be determined by:

tan 2� = 2�b−�a−�c
�a−�c

(8.7b)

The principal stresses at the point are found by introducing the principal strains of Equation (8.7a)
into Equation (8.3b).

8.3 Key points review

8.3.1 Complex strain system

• At a point in a material, there are six independent strain components, including three
normal strains and three shear strains.

• In a two-dimensional case, there are three independent strains, two normal strains
and one shear strain at a point of a material.
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• A strain usually varies from point to point.
• Strains are dimensionless.
• Principal strains are normal strains and include both maximum and minimum strains at

a point.
• In a three-dimensional system, there are three principal strains; while in a two-

dimensional system, there are two principal strains.
• Principal strains and principal stresses have the same directions, and are related by

Hooke’s law.

8.3.2 Strain measurement by strain gauges

• Strain gauges can only measure local strains at a point.
• Strain gauges measure the strains in the plane of the gauge.
• A strain gauge measures the normal strain in the longitudinal direction of the gauge.
• If the directions of principal stresses are known, only two strain gauges are required

to determine the principal strains at a point.
• A strain gauge rosette consisting of at least three gauges is sufficient to measure the

principal strains at any surface point of a material.

8.4 Examples

EXAMPLE 8.1
A thin-walled cylinder is subjected to an internal pressure as shown in Figure E8.1. At
a point on the outside surface of the generator, the two strain gauges recorded are,
respectively, �a = 254×10−6 and �b = 68×10−6. Determine the principal stresses at the
surface point. The Young’s modulus and Poisson’s ratio of the cylinder are, respectively,
E = 210GPa and 	 = 0�28.

Axial stress

Hoop stress

Strain gauges

b

a

Figure E8.1

[Solution] Due to the symmetric deformation and absence of shear stress on the cross-section,
the state of stress can be defined by the axial and hoop stresses caused by the internal pressure.
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The two stresses are the principal stresses. The two strain measurements from the strain gauge
are therefore the two principal strains. Thus a straightforward application of Equation (8.3b)
yields the principal stresses at the point.

Let �1 = �a and �2 = �b

�1 =
E

1−	2
��1+	�2�=

210GPa
1−0�282

�254×10−6+0�28×68×10−6�

= 0�062GPa= 62MPa

�2 =
E

1−	2
��2+	�1�=

210GPa
1−0�282

�68×10−6+0�28×254×10−6�

= 0�032GPa= 32MPa

The two principal stresses are, respectively, 62MPa and 32MPa.

EXAMPLE 8.2
At a surface point of a beam, a rectangular strain gauge rosette (Figure 8.6) recorded the
following strains:

�a =−270×10−6
 �b =−550×10−6
 �c = 80×10−6

If the gauges ‘a’ and ‘c’ are in line with and perpendicular to the axis of the beam,
calculate the principal stresses at the point and their direction. Take E = 200GPa and
	 = 0�3.

[Solution] This question requires direct application of Equation (8.7) to compute principal strains
and their directions, and Equation (8.3b) to compute principal stresses. For isotropic materials,
the directions of principal stresses coincide with the directions of principal strains.

From Equation (8.7a):

�1 =
1
2
��a+�c�+

1√
2

√
��a−�b�

2+ ��c−�b�
2

= 1
2
�−270+80�×10−6+ 10−6

√
2

√
�−270+550�2+ �80+550�2

= 392�49×10−6

�2 =
1
2
��a+�c�−

1√
2

√
��a−�b�

2+ ��c−�b�
2

= 1
2
�−270+80�×10−6− 10−6

√
2

√
�−270+550�2+ �80+550�2

=−582�49×10−6
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From Equation (8.3b):

�1 =
E

1−	2
��1+	�2�=

200×109 Pa
1−0�32

�392�49×10−6+0�3× �−582�49×10−6��

= 47�86MPa

�2 =
E

1−	2
��2+	�1�=

200×109 Pa
1−0�32

�−582�49×10−6+0�3×392�49×10−6�

=−102�14MPa

From Equation (8.7b):

tan2� = 2�b−�a−�c
�a−�c

= 2× �−550�− �−270�−80
−270−80

= 2�6

Thus:

2� = 68�8�

� = 34�4�

In order to determine the directions of the principal stresses (strains), the conceptual analysis
below can be followed. We know that one of the principal stresses (strains) is in the direction
of 34�4� from gauge ‘a’, and the normal strain in this direction must be compressive (negative),
judging by the compressive strains of gauges ‘a’ and ‘b’. The principal stress (strain) in this
direction is the minimum principal stress (strain). Thus:

34.4°

a

c

εc = 80 µε

εa = –270 µε

εb = –550 µε
b

Figure E8.2

�1 = 47�86MPa� �1 = �+90� = 34�4� +90� = 124�4�

�2 =−102�14MPa� �2 = � = 34�4�

EXAMPLE 8.3
At a point on the surface of the generator (Figure E8.3), the readings of the rectangular
strain gauge rosette are �a = 100×10−6, �b =−200×10−6 and �c =−300×10−6. The
gauges ‘a’ and ‘c’ are in line with and perpendicular to the axis of the beam. Determine the
principal stresses at the surface point and the magnitudes of the applied twist moment and
the axial force. The Young’s modulus and Poisson’s ratio of the cylinder are, respectively,
E = 70GPa and 	 = 0�3.

(Continued)
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EXAMPLE 8.3 (Continued)

D = 50 mm 

T

a

c

45°

45°

P

b

Figure E8.3

[Solution] The principal stresses can be easily computed by Equations (8.7a) and (8.3b). To
determine the applied axial force, the relationship between the principal stresses and the normal
stresses on the cross-section at the point must be established, from which the normal stress
and then the axial force can be calculated. To determine the applied torque, the relationship
between the principal stresses and the shear stresses on the cross-section is required since the
shear stress is directly related to the applied torque.

(a) Principal strains (Equation 8.7a):

�1 =
1
2
���a+�c�+

1√
2

√
��a−�b�

2+ ��c−�b�
2

= 1
2
��1000−300�×10−6+ 10−6

√
2

√
�1000+200�2+ �−300+200�2

= 1202×10−6

�2 =
1
2
���0� +�90� �−

1√
2

√
��0� −�45� �

2+ ��90� −�45� �
2

= 1
2
��1000−300�×10−6− 10−6

√
2

√
�1000+200�2+ �−300+200�2

=−502×10−6

(b) Principal stresses (Equation 8.3b):

�1 =
E

1−	2
��1+	�2�=

70
000
1−0�32

�1202−0�3×502�×10−6

= 80�09N/mm2

�2 =
E

1−	2
��2+	�1�=

70
000
1−0�32

�−502+0�3×1202�×10−6

=−10�9N/mm2
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(c) Stresses (�x and �xy ) on the cross-section:

Taking the axial direction as the x direction, the state of stress at the surface point is as follows:

τxy

σx σx

where the normal stress, �x , is related to the axial force F and the shear stress, �xy , is related
to the twist moment T . In this case the hoop stress is zero, that is, �y = 0.

From Equation (7.2), the sum of the two principal stresses yields:

�1+�2 = �x +�y (This equation holds for any two-dimensional problem)

Thus:

�x = �1+�2 = 80�09−10�9= 70N/mm2 ��y = 0�

On the cross-section (Equation 2.1(a)):

�x =
F

A

F = �xA= 70× �

4
×502 = 137�4kN

Again from Equation (7.2), the difference between the two principal stresses is:

�1−�2 =
√
��x −�y�

2+4�2xy

In this case, �y = 0. Thus:

�xy =
1
2

√
��1−�2�

2−� 2
x = 1

2

√
�80�09−10�9�2−702

= 19�7N/mm2

On the cross-section (Equation (3.2)):

�xy =
Tr

J

T = �xy J

r
= 29�7× ��/32�×504

25
= 0�7kN m

The axial force and twist moment applied at the free end are, respectively, 137.4 kN and
0.7 kN m.
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EXAMPLE 8.4
A cantilever beam of solid circular cross-section has a diameter 100mm and is 1m long.
An arm of length d is attached to its free end. The arm carries a load W as shown in
Figure E8.4. On the beam’s upper surface, halfway along its length and coinciding with its
vertical plane of symmetry is a rectangular strain gauge rosette which gave the following
readings for particular values of W and d:

�a = 1500×10−6
 �b =−300×10−6
 �c =−450×10−6�

If gauges ‘a’ and ‘c’ are in line with and perpendicular to the axis of the beam calculate
the values of W and d. Take E = 200000N/mm2 and 	 = 0�3.

0.5 m

0.5 m

45°

a

c

W

d

b

Figure E8.4

[Solution] Again, a direct application of Equations (8.7a) and (8.3b) can provide the principal
strains and principal stresses at the point. To determinate the load W and then lever arm d, the
bending moment and twist moment due to W and d on the cross-section at the location where
the strain gauge rosette is mounted must be calculated. The relationships between the bending
and twist moments and the normal and shear stresses on the section are then established, from
which the values of W and d are finally determined.

(a) Principal strains
Substituting values of �a, �b and �c in Equation (8.7a) gives:

�1 =
1
2
���a+�c�+

1√
2

√
��a−�b�

2+ ��c−�b�
2

= 1
2
��1500−450�×10−6+ 10−6

√
2

√
�1500+300�2+ �−450+300�2

= 1802�1×10−6

�2 =
1
2
���a+�c�−

1√
2

√
��a−�b�

2+ ��c−�b�
2

= 1
2
��1500−450�×10−6− 10−6

√
2

√
�1500+300�2+ �−450+300�2

=−752�2×10−6
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(b) Principal stresses
Now from Equation (8.3b):

�1 =
E

1−	2
��1+	�2�

= 200000
1−0�32

�1802�2 −0�3×752�2�×10−6

= 346�5N/mm2

�2 =
E

1−	2
��2+	�1�

= 200000
1−0�32

�−752�2+0�3×1802�2�×10−6

=−46�5N/mm2

(c) Stresses (�x and �xy ) on the cross-section
Taking the axial direction as the x direction, the state of stress at the surface point is as follows:

τxy

σx σx

where the normal stress, �x , is related to the bending moment caused by W , and the shear
stress, �xy , is related to the twist moment caused by W and d. The hoop stress is zero, that is,
�y = 0.

From Equation (7.2), the sum of the two principal stresses yields:

�1+�2 = �x +�y

Thus:

�x = �1+�2 = 346�5−46�5= 300N/mm2

On the cross-section the bending moment is:

M =W ×0�5m

From Equation (5.1a):

�x =
My

I
= W ×500mm×50mm

�×1004/64mm4
= 300N/mm2

W = 58�9kN
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Again from Equation (7.2), the difference between the two principal stresses is:

�1−�2 =
√
��x −�y�

2+4�2xy

�xy =
1
2

√
��1−�2�

2−� 2
x = 1

2

√
�346�5+46�5�2−3002

= 126�9N/mm2

On the cross-section, the twist moment is:

T =W ×d = 58�9×d

From Equation (3.2):

�xy =
Tr

J
= W ×d× r

J
= 58�9×d×50

�×1004/32

= 126�9N/mm2

d = 423mm

The load applied at the arm and the distance are, respectively, 58.9 kN and 423mm.

8.5 Conceptual questions

1. What is meant by ‘state of strain’ and why is it important in stress analysis?
2. What is meant by ‘principal strains’ and what is the importance of them?
3. How many principal strains are there at a point in a two-dimensional stress system?
4. What strain can be measured by a strain gauge?
5. At a surface point of a material if the directions of two principal stresses are known, how

many strain gauges are needed to measure the principal strains? Describe how the principal
stresses can be calculated.

6. At a surface point of a material if the directions of two principal stresses are unknown, how
many strain gauges are needed to measure the principal strains? Describe how the principal
strains and principal stresses can be calculated.

7. Discuss how can the Young’s modulus and Poisson’s ratio be measured by the strain gauges
technique.

8. Can strain gauges be used to measure shear strain? Explain how this can be done.

8.6 Mini test

Problem 8.1: A bar of circular section is subjected to torsion only. A single strain gauge is used
to determine the shear stress on the cross-section. What is the best orientation in which the
strain gauge should be mounted on the bar?

Figure P8.1

Problem 8.2: In the simple tension test shown in the figure, if the two strain gauges recorded �a
and �b, respectively, describe how the Young’s modulus and Poisson’s ratio can be determined.
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a b

Figure P8.2

Problem 8.3: The single strain gauge on the top surface of a cantilever of rectangular section
recorded a longitudinal strain �0. If loadW is applied to the free end of the cantilever, determine
the longitudinal stress at the location and the applied load W . The Young’s modulus of the
material is E.

b

h

W
l

Figure P8.3

Problem 8.4: The strain readings from a rectangular strain gauge rosette are given below:

�a = 1000×10−6
 �b = 200×10−6
 �c =−600×10−6

which are the strains recorded in the 0�, 45� and 90� directions, respectively. Find the principal
strains and their orientations. Find also the maximum shear strain.

Problem 8.5: The cantilever column of rectangular cross-section shown in Figure 8.5 is
subjected to a wind pressure of intensity � and a compressive force F . A rectangular strain
gauge rosette located at a surface point Q is positioned on the centroidal axis 2m downwards
from the free end. The rosette recorded the following strain readings:

�a =−222×10−6
 �b =−213×10−6
 �c =+45×10−6


where gauges ‘a’, ‘b’ and ‘c’ are in line with, at 45� to and perpendicular to the centroidal
axis of the column, respectively. Calculate the direct stress and the shear stress at point Q
in the horizontal plane and hence the compressive force F and the transverse pressure �.
E = 31
000N/mm2, 	 = 0�2.

150 mm

300 mm
Q

Centroidal
axis 

ω 

F

2 m

Figure P8.5



9 Theories of elastic failure

When a structural component is subjected to increasing loads it eventually fails. Failure is a
condition that prevents a structure from performing the intended task.

In practical applications, failure can be defined as:

• Fracture with very little yielding
• Permanent deformation

The resistance to failure of a material is called strength. It is comparatively easy to determine
the strength or the point of failure of a component subjected to a single tensile force. For
example, for the bars shown in Figure 9.1(a), the material fractures when the principal stress
approaches the fracture stress in a tensile test. This failure mode occurs normally for bars made
of brittle materials, such as cast iron, and is best demonstrated by such a bar subjected to
torsion (Figure 9.1(b)), where the maximum principal stress acts in the direction 45� to the
longitudinal axis.

However, if the material of the bars shown in Figure 9.1 is replaced by a ductile material, for
example, mild steel, the failure mode is significantly different. For the bar in tension (Figure 9.2a),
the bar breaks after undergoing permanent local deformation (yielding). Compared with the
bar subjected to torsion in Figure 9.1, the failure surface of the ductile bar is almost normal to
the longitudinal axis (Figure 9.2b), where the shear stress has reached the shear strength of the
material.

From the above simple examples, it can be concluded that material property is a predominant
factor that must be considered in failure analysis.

When a material is subjected to a combination of tensile, compressive and shear stresses,
it is far more complicated to determine whether or not the material has failed, and how the
material will fail. Most of the information on yielding or fracture of material subjected to complex
stress system comes from practical design experience, experimental evidence and interpretation
of them. Investigations on the information enable a formulation of theories of failure to be
established for various materials subjected to complex stresses.

The establishment of failure criteria for complex stress system is based on the extension of
the concept of failure criteria for a material subjected to a uniaxial stress to materials subjected
to combined stresses. The basis for this extension is the introduction of an equivalent stress
(�eq) that represents a combined action of the stress components of a complex stress system. It
is assumed that failure will occur in a material subjected to a complex stress system when this
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(a) (b)

45°

45°

45°

Figure 9.1

(a) (b)

Figure 9.2

equivalent stress reaches a limiting value (�Yield) that is equal to the failure (yield or fracture)
stress of the same material subjected to simple tension.

Materials can be broadly separated into ductile and brittle materials. Examples of ductile
materials include mild steel, copper, etc. Cast iron and concrete are typical examples of brittle
materials. Brittle materials experience little deformation prior to failure and failure is generally
sudden. A ductile material is considered to have failed when a marked plastic deformation has
begun. A number of theories of elastic failure are recognized, including the following:

• Maximum principal stress theory
• Maximum shear stress theory (Tresca theory)
• Maximum distortional energy density theory (von Mises theory).

The selection of failure criteria usually depends on a number of aspects of a particular design,
includingmaterial properties, state of stress, temperature anddesignphilosophy. Itmaybepossible
that there exist several failure criteria that are applicable to a material in a particular design.
However, in most cases, failure criteria are classified as applicable to brittle or ductile materials.

9.1 Maximum principal stress criterion

This criterion assumes that principal stress is the driving factor that causes failure of materials.
According to this criterion, the following comparison has been made between a complex stress
system and a simple tension/compression test.
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Two-dimensional complex state of stress Simple tension/compression at failure

τxy

σx

σy
σ2

σ1

Compression

Tension

σx = σ1 
= σYield

σx = σ2 
= σYield

From Equation (7.2) the principal stresses are:

�1 =
1
2
���x +�y�+

√
��x −�y�

2+4�2xy �

�2 =
1
2
���x +�y�−

√
��x −�y�

2+4�2xy �

At failure the stresses in the two dimensional complex system are:

(i) when �2 ≥ 0:

�eq = �1 = �Yield �in tension�

(ii) when �1 ≤ 0:

�eq = ��2� = �Yield �in compression� (9.1)

(iii) when �1 > 0, �2 < 0:

�eq = �1 = �Yield �in tension�

and

�eq = ��2� = �Yield �in compression�

From the above comparison, it is concluded that for an arbitrary state of stress

Failure (i.e. yielding) will occur when one of the principal stresses in a material is equal to
the yield stress in the same material at failure in simple tension or compression.

The criterion was intended to work for brittle and ductile materials, while experimental evidence
shows that it is approximately correct only for brittle materials. For brittle materials, both tensile
and compressive strength should be checked upon since they are usually different.
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9.2 Maximum shear stress criterion (Tresca theory)

This criterion assumes that shear stress is the driving factor that causes failure of a material.
According to this criterion, comparisons are made between the maximum shear stress of a
material subjected to a complex stress system and that of the same material at failure when a
simple tension is applied.

Two-dimensional complex state of stress

τxy

σx

σy

From Equation (7.4) the maximum shear
stress is:

�max =
1
2

√
��x −�y�

2+4�2xy

or

�max =
�1−�2

2

Simple tension at failure

σx = σYield

Since there is no shear stress,
�x�= �Yield� and �y�= 0� are the
two principal stresses. At the
moment of failure the maximum
shear stress of the above state of
stress is:

�max =
�1−�2

2
= �x

2
= �Yield

2

At failure the stresses in the two-dimensional complex system are:

�eq =
√
��x −�y�

2+4�2xy = �Yield (9.2)

or

�eq = �1−�2 = �Yield

From the above comparison, it is concluded that for an arbitrary state of stress

Failure (i.e. yielding) will occur when the maximum shear stress in the material is equal to
the maximum shear stress in the same material at failure in simple tension.

9.3 Distortional energy density (von Mises theory) criterion

This criterion assumes that distortional energy density (shear strain energy per unit volume) is the
driving factor that causes failure of a material. According to this criterion, comparisons are made
between the maximum shear strain energy per unit volume of a material subjected to a complex
state of stress and that of the same material at failure when a simple tension is applied. Thus,
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Two-dimensional complex stress system

τxy

σx

σy

The shear strain energy per unit volume
is:

Us =
1

12G
���1−�2�

2+� 2
2 +� 2

1 �

= 1
6G

�� 2
1 +� 2

2 −�1�2�

or

Us =
1
6G

�� 2
x −�x�y +� 2

y +3�2xy �

Simple tension at failure

σx = σYield

Since there is no shear stress,
�x�= �Yield� and �y�= 0� are the two
principal stresses. At the moment of
failure the shear strain energy per
unit volume is:

Us =
1
6G

�� 2
1 +� 2

2 −�1�2�

= 1
6G

� 2
Yield

At failure the stresses in the two-dimensional complex system are:

�eq =
√
� 2
1 +� 2

2 −�1�2 = �Yield (9.3)

�eq =
√
� 2
x −�x�y +� 2

y +3�2xy = �Yield

From the above comparison, it is concluded that for an arbitrary state of stress

Failure (i.e. yielding) will occur when the shear strain energy per unit volume in a material
is equal to the equivalent value at failure of the same material in simple tension.

The application of the failure criterions depends on the modes of failure (e.g. failure by yielding
or fracture). In general, the maximum principal stress criterion is valid for failure mode dominated
by fracture in brittle materials, while Tresca and von Mises criterions are valid for general yielding
mode of failure in ductile materials.

9.4 Special forms of Tresca and von Mises criterions

In many practical applications, at a surface point of a material there exists normal stress in one
direction only. For example, at a surface point of the beam shown in Figure 9.3, the normal
stress in the vertical direction is far smaller than that in the longitudinal direction and is usually
ignored in the stress analysis of beams. If the longitudinal direction is defined as the x direction,
�y = 0. Thus, Tresca and von Mises theories (Equations (9.2) and (9.3), respectively) are reduced
to the following:
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x
τxy

σx

Figure 9.3

Tresca theory:

√
�x +4�2xy = �Yield (9.4a)

von Mises theory:

√
� 2
x +3�2xy = �Yield (9.4b)

It is clear from Equation (9.4) that Tresca theory is more conservative than von Mises theory
since the shear stress is factorized by 4 rather than 3.

9.5 Key points review

• A brittle material is likely to fail by fracture, and thus has higher compressive strength
(holds greater compressive loads).

• A ductile material is likely to fail by yielding, i.e., having permanent deformation.
• The maximum principal stress theory is best for brittle materials and can be unsafe for

ductile materials.
• The maximum shear stress and the distortional energy density theories are suitable for

ductile materials, while the former is more conservative than the latter.
• For brittle materials having a weaker tensile strength, reinforcement is usually required

in the tension zone to increase the load-carrying capacity.

9.6 Recommended procedure of solution

It is possible that a material may fail at any point within the material, but, in general, starting
at a point where an equivalent stress defined above reaches a critical value first. Therefore, in a
practical design, the application of the above criterions relies on identification of, for example, in
the design of a beam, critical cross-sections where maximum bending moment, twist moment or
axial force may exist. On these critical sections, maximum normal and shear stresses are found.
A recommended procedure of solution is shown in Figure 9.4.

9.7 Examples

EXAMPLE 9.1
Explain why concrete is normally reinforced with steel bars or rods when tensile forces
are applied to a structure.

[Solution] This question tests your understanding of the failure mode of brittle materials. This
type of materials usually has different strength in tension and compression.
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Identify critical sections

(a) section of maximum
     deflection;
(b) sudden change of section
     geometry;
(c) point of concentrated force;
(d) support.

Compute bending
moment, twist moment

and axial force on critical
sections

Identify critical points
on critical sections

(a) boundary points;
(b) points along neutral axis;
(c) points on sections where cross-
     sectional shapes change
     abruptly.

Compute normal stress and
shear stress at the points to
establish the state of stress

(a) brittle or ductile
       material.
(b) plasticity or fracture.

Compare with failure stress
of the material and make a
              judgement

τxy

σx

σy

Compute equivalent stress using
a design criterion (Tresca, von

Mises, etc.)

Figure 9.4

Concrete is a typical example of brittle material that is weaker in tension, and has higher load
capacity in compression. When concrete is subjected to tension, fracture is initiated at imper-
fections or micro-cracks, whereas the imperfections and micro-cracks are closed in compression
and fracture is unlikely to occur. Therefore, steel or other types of reinforcements are needed in
the tension zone to increase the tensile strength of the structure to prevent early fracture failure.

EXAMPLE 9.2
Codes of practice for the use of structural steel uses either Tresca or von Mises criterion.
For a beam member subjected to bending and shear, the criterions can be expressed as

Tresca:√
� 2
x +4�2xy = �Yield

Von Mises:√
� 2
x +3�2xy = �Yield

Verify the expression and state which criterion is more conservative.
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[Solution] The answer to this question is a direct application of Equations (9.2) and (9.3) to the
state of stress where one of the normal stresses is zero.

For the beam shown in Figure E9.2(a) subjected to bending and shearing, the state of stress at
the arbitrary point is represented by Figure E9.2(b), where only one normal stress exists.

x

(a) (b)

Figure E9.2

Assuming that the horizontal and vertical directions are, respectively, the x and y directions,
�y = 0. Thus the two principal stresses at the point are:

�1 =
1
2
��x +

√
��x�

2+4�2xy �

�2 =
1
2
��x −

√
��x�

2+4�2xy �

Introducing the obtained principal stresses in to Equations (9.2) and (9.3) yields, respectively,
the special form of the two criterions.

Since
√
�2
x +4�2xy >

√
�2
x +3�2xy , for the same value of �Yield a design by Tresca criterion

demands smaller �x or/and �xy , that is, a reduction of applied loads or an increase of material
usage. Thus Tresca criterion is more conservative than von Mises criterion.

EXAMPLE 9.3
Consider a bar of cast iron under complex loading. The bar is subjected to a bending
moment of M = 39N m and a twist moment of T = 225N m. The diameter of the bar
is D = 20mm. If the material of the bar fails at �Yield = 128MPa in a simple tension test,
will failure of the bar occur according to the maximum principal stress criterion?

T

M

A τxy

σx

Figure E9.3

[Solution] On any cross-section of the beam, the maximum shear stress due to twisting is along
the circumference and the maximum tensile stress due to bending is at the lowest edge. Thus,
the state of stress at a point A taken from the lowest generator must be considered. The stresses
at this point can be calculated from Equations (3.2) and (5.1a). The principal stresses can then
be calculated from these stresses.
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The shear stress due to torsion is:

�xy =
Tr

J
= TD/2

�D4/32
= 32×225N m×20×10−2m/2

�× �20×10−3�4

= 143�24×106N/m2 = 143�24MPa

The normal stress due to bending is:

�x =
My

I
= MD/2

�D4/64
= 64×39N m×20×10−3 m/2

�× �20×10−3�4

= 49�66×106 N/m2 = 49�66MPa

From Equation (7.2), the principal stresses at the point are:

�1 =
1
2
���x +�y�+

√
��x −�y�

2+4�2xy �

= 1
2
��49�66MPa+0�+

√
�49�66MPa−0�2+4× �143�24MPa�2�

= 169�96MPa

�2 =
1
2
���x +�y�−

√
��x −�y�

2+4�2xy �

= 1
2
��49�66MPa+0�−

√
�49�66MPa−0�2+4× �143�24MPa�2�

=−120�3MPa

�1 > �Yield

The material has failed according to the maximum principal stress criterion.

EXAMPLE 9.4
In a tensile test on a metal specimen having a cross-section of 20mm×10mm failure
occurred at a load of 70 kN. A thin plate made from the same material is subjected to loads
such that at a certain point in the plate the stresses are �y =−70N/mm2, �xy = 60N/mm2.
Determine from the von Mises and Tresca criterions the maximum allowable tensile stress,
�x , that can be applied at the same point.

τxy = 60 

σy = –70 

σx = ?

Figure E9.4
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[Solution] For the state of stress shown in Figure E9.4, the equivalent stresses of Equations (9.2)
and (9.3) can be calculated and they are functions of �x . Comparing the equivalent stresses with
the failure stress of the material at simple tension test yields the maximum allowable �x .

From the simple tension test:

�Yield =
70000N

20mm×10mm
= 350N/mm2

Tresca criterion (Equation (9.2)):

�eq =
√
��x −�y�

2+4�2xy ≤ �Yield√
��x − �−70��2+4×602 ≤ 350

Therefore:

��x +70�2+4×602 ≤ 3502

� 2
x +140x−103200≤ 0

Thus,

�x ≤ 259N/mm2

von Mises criterion (Equation (9.3)):

�eq =
√
� 2
x −�x�y +� 2

y +3�2xy ≤ �Yield√
� 2
x −�x�−70�+ �−70�2+3×602 ≤ 350

Therefore:

� 2
x +70�x −106800≤ 0

Thus:

�x ≤ 293�7N/mm2

From the above solutions, it can be seen that the maximum allowable value of �x from Tresca
criterion is smaller than that from von Mises criterion, and hence the resulting design is more
conservative.
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9.8 Conceptual questions

1. Describe the differences between failure by fracture and failure by yielding.
2. Describe the failure mode of a cast iron bar subjected to a uniaxial tensile force. If the bar

is made of mild steel, describe how the failure mode is different.
3. Describe the failure mode of a cast iron bar subjected to torsion. If the bar is made of mild

steel, describe how the failure mode is different.
4. What is the definition of the maximum principal stress criterion? What type of material is it

useful for?
5. What is the definition of the Tresca failure criterion? What type of material is it

useful for?
6. What is the definition of the von Mises failure criterion? What type of material is it

useful for?
7. Explain the term ‘equivalent stress’ as used in connection with failure criterions.
8. On what conditions the simplified form of Tresca and von Mises criterions can be used?

9.9 Mini test

Problem 9.1: Explain why different failure criterions are needed in design and discuss what
aspects should be considered in a typical design.

Problem 9.2: In a ductile material there are four points at which the states of stress are,
respectively, as follows:

τxy = σ

σy = –σ σy = σ

σx = σ σx = σ
1 2

σx = σ
3 4

Figure P9.2

Which point fails first and which point fails at last? What conclusion can you draw from your
analysis?

Problem 9.3: The stresses at a point of a two-dimensional structural member are found as
follows:

�x = 140N/mm2
 �y =−70N/mm2
 �xy = 60N/mm2

The material of the member has a yield stress in simple tension of 225N/mm2. Determine
whether or not failure has occurred according to Tresca and von Mises criterions.

Problem 9.4: On the beam section shown in Figure P9.4, there exists an axial force of 60 kN.
Determine the maximum shear force that can be applied to the section using the Tresca and von
Mises criterions. The material of the beam breaks down at a stress of 150N/mm2 in a simple
tension test.
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100 mm

V = ?

P = 60 kN

60 mm

Figure P9.4

Problem 9.5: A cantilever of circular cross-section is made from steel, which when subjected
to simple tension suffers elastic breakdown at a stress of 150N/mm2. If the cantilever supports
a bending moment of 25 kN m and a torque of 50 kN m, determine the minimum diameter of
the cantilever using the von Mises and Tresca criterions.

T

M

Figure P9.5



10 Buckling of columns

Compression members, such as columns, are mainly subjected to axial compressive forces. The
stress on a cross-section in a compression member is therefore normal compressive stress. A
short column usually fails due to yielding or shearing (Figure 10.1), depending on material
properties of the column.

However, when a compression member becomes longer, it could become laterally unstable
and eventually collapse through sideways buckling at an axial compression. The compressive
load could be far smaller than the one that would cause material failure of the same member. A
simple test to illustrate this can be easily carried out by pushing the ends of a piece of spaghetti.
A lateral deflection from the original position will be observed when the applied compression
reaches a certain value, which is designated Pcr and called critical buckling load (Figure 10.2).
The critical buckling load is the maximum load that can be applied to a column without causing
instability. Any increase in the load will cause the column to fail by buckling.

Ductile Brittle

Figure 10.1

P ≤ Pcr P > Pcr

Figure 10.2
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The onset of the lateral deflection at the critical stage when P = Pcr establishes the initiation of
buckling, at which the structural system becomes unstable. Pcr represents the ultimate capacity
of compression members, such as long columns and thin-walled structural components.

• Buckling may occur when a long or slender member is subjected to axial compression;
• A compression member may lose stability due to a compressive force that is smaller

than the one causing material failure of the same member;
• The buckling failure of a compression member is related to the strength, stiffness of

the material and also the geometry (slenderness ratio) of the member.

For a long or slender member subjected to compression, considering material strength along is
usually not sufficient in design.

10.1 Euler formulas for columns

At the critical buckling load a column may buckle or deflect in any lateral direction. In general,
the flexural rigidity or stiffness of a column is not the same in all directions (Figure 10.3). By
common sense, a column will buckle (deflect) in a direction related to the minimum flexural
rigidity, EI, that is, the minimum second moment of area of the cross-section.

The maximum axial load that a long, slender ideal column can carry without buckling was
derived by Leonhard Euler in the eighteenth century, and termed Euler formula for columns.
The formula was derived for ideal columns that are perfectly straight, homogeneous and free
from initial stresses.

10.1.1 Euler formula for columns with pinned ends

The critical buckling load for the column shown in Figure 10.4 is:

Pcr =
�2EI

L2
(10.1)

For the rectangular section shown, the flexural rigidity, EI, is related to the X–X axis, about
which the second moment of area of the cross-section is minimum. By Equation (10.1), a higher
compressive force is required to cause buckling of a shorter column or a column with greater
flexural rigidity.

Equation (10.1) is the Euler formula for a column with pinned ends and is often referred
to as the fundamental case. In general, columns do not always have simply supported ends.
Therefore, the formula for the critical buckling load needs to be extended to include other form
of end supports.

T 1

R 1 T 2

R 2

T

T

R 2

R 2

R 1

T

T 1

R 1

B

D 1 D A

B

D D 1

B

Figure 10.3
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X

X

Pcr

L

Figure 10.4

10.1.2 Euler formulas for columns with other ends

Figure 10.5 shows comparisons between columns with different end supports. Comparing with
the pin-ended column (Case (a)), the buckling mode of the column with free–fixed ends (Case
(b)) is equivalent to the one of a pinned column with doubled length.

(a)

(b) (c) (d)

Pcr

L

2 × L

Pcr

L

Pcr

0.7 L

Pcr

0.5 L

Figure 10.5
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Table 10.1 Effective length factor of compression members

Support at column ends Effective length factor �

Fixed–Fixed 0.5
Pinned–Fixed 0.7
Pinned–Pinned 1
Free–Free 1
Fixed–Free 2

Thus for Case (b):

Pcr =
�2EI

�2L�2
(10.2)

For Cases (c) and (d), the Euler formulas can also be made by comparing their buckling modes
with that of Case (a). In Cases (c) and (d) the deflection curves of the upper 0�7 L and middle 0�5 L
show, respectively, a similar pattern to that shown in Case (a). The considered deflection shapes
are the segments between the two inflection points on the deflection curves. The distance
between the two inflection points is called effective length, Le, of a column when comparison
is made with a similar column with two pinned ends. For a general case, therefore, the Euler
formula can be written as:

Pcr =
�2EI

L2e
= �2EI

��L�2
(10.3)

where � is the effective length factor that depends on the end restraints. Table 10.1 shows the
values of � for some typical end restraints.

10.2 Limitations of Euler formulas

The Euler formulas are applicable only while the material remains linearly elastic. To apply this
limitation in practical designs, Equation (10.3) is rewritten as:

Pcr =
�2EI

��L�2
= �2EAr2

��L�2
= �2EA

��L/r�2
(10.4a)

or, the compressive critical stress is:

�cr =
Pcr
A

= �2E

��L/r�2
(10.4b)

In Equation (10.4) the second moment of area, I, is replaced by Ar2, where A is the cross-sectional
area and r is its radius of gyration. �L/r is known as slenderness ratio. It is clear that:

• if a column is long and slender, �L/r is large and �cr is small;
• if a column is short and has a large cross-sectional area, �L/r is small and �cr is large.

To ensure that the material of a column remains linearly elastic, the stress in the column before
buckling must remain below some particular value, normally the proportionality limit of the
material, �p . Thus:
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�cr =
�2E

��L/r�2
≤ �p (10.5a)

or

�L

r
≥ �

√
E

�p
(10.5b)

If the slenderness ratio of a column is smaller than the specified value in Equation (10.5b), the
Euler formulas are not applicable.

10.3 Key points review

• For a bar or a column subjected to compressive loading, a sudden failure (collapse)
may occur. This type of failure is called buckling.

• A compression member may fail due to buckling at a stress level which is far below
the compressive strength of the material.

• The minimum compressive load that causes buckling of a compressive member is
known as critical buckling load.

• For a compression member, the critical buckling load is proportional to its flexural
rigidity and inversely proportional to the square of its length.

• The end support conditions have a significant influence on the critical load, which
determine the number of inflection points on the deflected column.

• The closer the inflection points of a column are, the higher the critical buckling load
of the column is.

• The Euler formula for buckling of a column is based on the following assumptions:

– The column is initially perfectly straight.
– The compression is applied axially.
– The column is very long in comparison with its cross-sectional dimensions.
– The column is uniform throughout and the proportional limit is not exceeded.

• The ratio of the effective length to the radius of gyration of a column is defined as
slenderness ratio.

• Slenderness ratio governs the critical buckling load: the larger the slenderness ratio is,
the lesser the strength of a column. This means the buckling resistance decreases as
the slenderness ratio increases.

• The application of Euler formulas depends on elasticity rather than compressive
strength of material.

• For a particular column cross-section, length and end supports, the critical buckling
load capacity depends only upon the Young’s modulus E. Since there is little variation
in E among different grades of steel, there is no advantage in using a high-strength
steel.



Buckling of columns 183

10.4 Examples

EXAMPLE 10.1
Derive the Euler formula for a column with pinned ends.

y

y

M(x) = Py

P

P P

L

x

x

Figure E10.1

[Solution] The buckled shape shown in Figure E10.1 is possible only when the applied load is
greater than the critical load. Otherwise, the column remains straight. The solution of this problem
is to seek the relationship between the applied axial load and the lateral deflection of the column.

From Equation (6.1), the deflection and the bending moment on the cross-section at an arbitrary
location x is related by:

d2y

dx2
=−M�x�

EI
=−Py

EI

The above equation can be rewritten as:

d2y

dx2
+k2y = 0

where k2 = P/EI

The equation is a linear ordinary differential equation of second order and its solution is:

y = A sinkx+B coskx

where A and B are arbitrary constants that can be determined from the end support conditions.
These conditions are:

at x = 0� y�0�= 0

at x = L� y�L�= 0

Hence:

y�0�= 0� A sin0+B cos0= 0


or

B= 0

y�L�= 0� A sinkL+B coskL= 0
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or

A sinkL= 0

The above condition can be satisfied by letting A= 0, but this will lead to no lateral deflection
or buckling. Alternatively, the condition can be satisfied by taking:

kL=m�

where m is an nonzero integer. Thus:

√
P

EI
L=m�

or

P = m2�2EI

L2

The above force provides a series of buckling loads at which the column will buckle with
different shapes. Obviously, the lowest value of the force is the critical buckling load as defined
in Figure 10.2 and takes the value when m= 1, that is:

Pcr =
�2EI

L2

This result is identical to the solution given in Equation (10.1).

EXAMPLE 10.2
The pin-connected plane steel truss shown in Figure E10.2 carries a concentrated force F .
Assuming that both members have a circular section with a diameter of 80mm, determine
the critical buckling load of the truss (E = 200GPa).

P 

L

P 

S

60°
60°

30° 30°

F

F

4 m

Figure E10.2

[Solution] The critical load of the truss is the minimum load that will cause buckling of at
least one member. The smallest critical buckling load of the two pin-ended members must be
calculated first, to which the critical buckling load of the truss is related through equilibrium of
the joint.
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For the long member:

PL
cr =

�2EI

L2
= �2×20×109 Pa×�× �80×10−3�4/64

�4m× cos30��2
= 330�7kN

For the short member:

PS
cr =

�2EI

L2
= �2×20×109 Pa×�× �80×10−3�4/64

�4m× sin30��2
= 992�2kN

So, the long member will buckle first at an axial compression of 330.7 kN. For the equilibrium
of the pin joint, taking PL = PL

cr and resolving in the PL direction yield:

P 

L

P 

S
60°

30°

F

PL
cr = Fcr× cos60�

or

Fcr =
PL
cr

cos60� = 330�7kN
cos60� = 661�4kN

When F = Fcr = 661�4kN, the axial compression in the short member is:

PS = F× cos30� = 661�4×
√
3
2

= 572�8kN

The short member is stable. Thus, the critical buckling load of the truss is 661.4 kN.

EXAMPLE 10.3
Abeam–columnstructure (FigureE10.3) consistsofabeamof rectangular section (200mm×
300mm) and a column of I-shaped section (UBs 178× 102× 19). The allowable stress
of the beam is �allow = 100MPa. The coloumn is made of steel having E = 200GPa and
�p = 200MPa. Determine the maximum point load that can be applied along the beam.

2 mC
A

300

200

P

12 m
4 m

xx

y

y

Figure E10.3
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[Solution] To determine the maximum load, both the beam and the column should be
considered. The bending strength of the beam and the instability of the column must be checked.
For the beam, when the force is applied at the mid-span, the maximum bending moment and
the maximum normal stress occur on the mid-span section. The compression in the column is
maximum when the force moves to the free end of the beam.

For the beam, when the force is applied at the mid-span, the maximum bending moment occurs
on the mid-span cross-section and is:

Mmax =
PL

4
= P×12m

4
= 3P�N m�

The maximum normal stress on the section is:

�max =
Mmaxh/2
bh3/12

= 3P×300×10−3 m/2
200×10−3 m× �300×10−3 m�3/12

= P×103 N/m2

From �max ≤ �allow = 100MPa:

P ≤ 100KN

For the column (UBs 178×102×19), the radius of gyration can be found as:

rx = 7�48cm
 ry = 2�37cm
 A= 24�3cm2

The column may buckle in the plane of X–X or Y–Y , depending on the slenderness ratios related
to these directions. In the X–X plane, the column can be taken as supported by pin and fixed
ends and in the Y–Y plane the column can be considered as one with free–fixed ends. Thus, the
slenderness ratios of the column about the X–X and Y–Y axes are, respectively (see Table 10.1):

�xL

rx
= 2×4m

7�48×10−2 m
= 107

�yL

ry
= 0�7×4m

2�37×10−2 m
= 118�1

From Equation (10.5b):

�xL

rx
= 107> �

√
E

�p

= �

√
200×109 Pa
200×106 Pa

= 99�3

�yL

ry
= 118> �

√
E

�p

= �

√
200×109 Pa
200×106 Pa

= 99�3

Since the slenderness ratio of the column is larger than the value specified in Equation (10.3),
the Euler formulas are valid. Buckling about the Y–Y axis is more likely due to the greater
slenderness ratio. Thus, from Equation (10.4a), the critical buckling load of the column is:

Pcr =
�2EA

��yL/ry �
2
= �2×200×109 Pa×24�3×10−4 m2

�118�1�2
= 343�9kN
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The maximum compression in the column caused by the applied force occurs when the force
acts at the free end of the beam. The compression can be easily calculated from the equilibrium
of the beam

P
2 m

BA

RA

RB
12 m

by taking moment about A. So:

12m×RB− �12+2�m×P = 0

which yields:

RB =
7
6
P

or

P = 6
7
RB

The compression in the column is numerically equal to RB. When RB reaches the critical value,
that is, RB = Pcr

P ≤ 6
7
RB =

6
7
Pcr =

6
7
×343�9kN= 294�8kN

Compared with the maximum force obtained from applying the strength condition of the beam,
which is less than 294.8 kN, the maximum applied force that the structure can carry is therefore
100 kN.

EXAMPLE 10.4
A steel column of 4m long is pinned at both ends and has an American Standard Steel
Channel section (C130×10). The Young’s modulus of the steel is E = 200GPa and the
elastic limit of the material is 200MPa.

(a) Determine the critical buckling load of the column.
(b) If a column is built up of two C130×10 channels placed back to back at a distance

of d and connected to each other at an interval of h along the length of the column,
determine the values of d and h and calculate the critical buckling load of the column.

(Continued)
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EXAMPLE 10.4 (Continued)

(a) (b)

P

x

y

x0

12 m

d

Yc

h

Figure E10.4

[Solution] A single channel section is not symmetric. Such a column will buckle in the direc-
tion of minimum radius of gyration. When the two channel sections are combined together
(Figure E10.4(b)), the radius of gyration about the x-axis is a constant, while the radius of
gyration about the Yc direction depends on the back-to-back distance d. The best design for this
combined section is to achieve the same radius of gyration about both the x and Yc directions,
from which distance d can be determined. Between the two connection points, the best design
is to make sure that the two channels do not buckle individually and behave as a composite
unit before the critical buckling load of the full length column has been reached. This can be
used as the requirement to determine h.

The section properties of C130×10 are as follows:

A= 12�71cm2
 Ix = 312cm4
 Iy = 19�9cm4

rx = 4�95cm
 ry = 1�25cm
 x0 = 1�23cm

(a) For the single section, since ry < rx and

�yL

ry
= 1×12×102 cm

1�25cm
= 960

≥ �

√
E

�e
= �

√
200×109 Pa
200×106 Pa

= 99�35

the column will fail due to buckling at:

Pcr =
�2EIy

��yL�
2
= �2×200×109 Pa×19�9×10−8 m4

�1×12m�2
= 2�73kN

(b) For the combined section, the second moment of area about the x-axis is twice that of
the single section. The second moment of area about the Yc-axis varies depending on the
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back-to-back distance d. For a single section, the second moment of area about the Yc-axis
(Figure E10.4(b)) is calculated by the parallel axis theorem (Equation (5.4)).

x

y
x0Yc

d /2

IYc = Iy +A�x0+
d

2
�2 = 19�9cm4+12�71cm2×

(
1�23cm+ d

2

)2

To achieve an equal radius of gyration about both the x- and the Yc-axis requires

2× IYc = 2× Ix or

19�9cm4+12�71cm2× �1�23cm+ d

2
�2 = 312cm4

Thus:

d = 2

(√
312−19�9

12�71
−1�23

)
= 7�13cm

Within the two connection points of distance h, buckling of individual columns occurs when the
compression in the columns reaches a certain level. To prevent this local failure, the minimum
requirement is that the critical local buckling load (local buckling mode) is greater than or at
least equal to half of the critical buckling load of the entire column (overall buckling mode). Thus
the slenderness ratio of a single column between the two connection points must be smaller
or at least equal to two times the slenderness ratio of the entire column having the combined
section:

�yh

ry
≤ 2× �yL

2rYc
= 2× �xL

2rx
= �xL

rx

Hence:

1×h

1�25×10−2 m
≤ 1×12m

4�95×10−2 m

From which:

h≤ 3�03m

With the above-calculated h and d, the slenderness ratio of the composite column for the overall
buckling satisfies:

�xL

2rx
= 1×12m

2×4�95×10−2 m
= 121�2≥ �

√
E

�p
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The composite column will fail by buckling, and the critical buckling load for the composite
column with the above-calculated d and h is:

Pcr =
�2E�2× Ix �

��xL�
2

= �2×200×109 Pa×2×312×10−8 m4

�1×12m�2
= 85�54kN

By constructing the composite section, the critical buckling load of the column increases from
2.73 kN to 85.54 kN, an increase of 31 times.

EXAMPLE 10.5
Derive the solution for buckling of columns with general end conditions.

[Solution] Euler formula (Equation (10.3)) is given on the basis of knowing the effective length
of a column. The effective length factors for selected cases are given in Table 10.1. This example
shows how these factors can be calculated and how the buckling load of columns with other
support conditions can be evaluated. The solution starts with solving general bending equation
from Example 10.1. In order to include the solution for columns with general end condi-
tions (each end should have two conditions to describe), a fourth-order differential equation is
needed.

From Example 10.1, the deflection and bending moment for a buckled column is related by:

d2y

dx2
+k2y = 0

Differentiating the equation twice yields:

d4y

dx4
+k2 d

2y

dy2
= 0

where k2 = P/EI. The solution of this fourth-order differential equation is:

y = C1 sinkx+C2 coskx+C3x+C4

The four unknown constants are to be determined through the introduction of support condi-
tions. The derivatives of the above solution are given as:

dy

dx
= C1k coskx−C2k sinkx+C3

d2y

dx2
=−C1k

2 sinkx−C2k
2 coskx

d3y

dx3
=−C1k

3 coskx+C2k
3 sinkx

The above derivatives are related to the rotation, bending moment and shear force (Equations
(6.1) and (6.2)) of the column. Introducing appropriate deflection, rotation, bending moment
and shear force conditions at both ends of the column leads to a solution of k, from which the
buckling loads can be calculated.
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x

PcrP

L

Figure E10.5

For a column with fixed ends (Figure E10.5), e.g., the end conditions are:

at x = 0
 y�0�= dy

dx
�0�= 0

at x = L
 y�L�= dy

dx
�L�= 0

Introducing the above conditions into the solutions yields:

y�0�= 0 � C2+C4 = 0

dy

dx
�0�= 0 � C1k+C3 = 0

y�L�= 0 � C1 sinkL+C2 coskL+C3L+C4 = 0

dy

dx
�L�= 0 C1k coskL−C2k sinkL+C3 = 0

To satisfy this set of equations, C1, C2, C3 and C4 could take zero, which are trivial solutions
that show no deflection of the column. However, when the column buckles, at least one of the
four constants must not be zero. This requires:

det

∣∣∣∣∣∣∣∣
0 1 0 1
k 0 1 0

sinkL coskL L 1
k coskL −k sinkL 1 0

∣∣∣∣∣∣∣∣
= 0

The evaluation of this determinant yields:

2 coskL+kL sinkL−2= 0

The minimum value of kL satisfying the about equation is kL= 2�. Thus:

√
P

EI
L= 2�

or P = 4�2EI

L2
= �2EI

�0�5L�2

The effective length factor is 0.5, which is exactly the same as the one shown in Table 10.1.
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10.5 Conceptual questions

1. Define the term ‘column’ and ‘slenderness’ and explain the term ‘slenderness ratio’ as
applied to columns.

2. Explain how the Euler formula for pin-ended columns can be modified for columns having
one or both ends fixed.

3. Which of the following statement defines the term ‘critical buckling load’?

(a) The stress on the cross-section due to the critical load equals the proportional limit of
the material.

(b) The stress on the cross-section due to the critical load equals the strength of the
material.

(c) The maximum compressive axial force that can be applied to a column before any
lateral deflection occurs.

(d) The minimum compressive axial force that can be applied to a column before any
lateral deflection occurs.

(e) The axial compressive axial force that causes material failure of a column.

4. Why does the Euler formula become unsuitable at certain values of slenderness ratio?
5. Defined the term ‘local buckling’.
6. A column with the following cross-sections (Figure Q10.6) is under axial compression; in

which direction the column may buckle?

Figure Q10.6

7. If two columns made of the same material have the same length, cross-sectional area and
end supports, are the critical buckling loads of the two columns the same?

8. The long bar shown in Figure Q10.8 is fixed at one end and elastically restrained at the
other end. Which of the following evaluations of its effective length factor is correct?

Figure Q10.8

(a) � < 0�5; (b) 0�5< � < 0�7; (c) 0�7< � < 2; (d) � > 2
9. Two compression members are made of the same material and have equal cross-sectional

area. Both members have also the same end supports. If the members have square
and circular sections, respectively, which of the member has greater critical buckling
load?

10. Consider the columns shown in Figure Q10.10. All columns are made of the same material
and have the same slenderness ratio. The columns are all pinned at both ends, two of
which have also intermediate supports (bracing). If the critical buckling load of column (a)
is Pcr, calculate the critical buckling loads of the remaining columns.
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L

(a) (b) (c)

L /2

L /2
2L /3

L /3

Figure Q10.10

10.6 Mini test

Problem 10.1: Describe the factors that affect critical buckling load of a column and how
stability capacity of the column can be enhanced.

Problem 10.2: A compressive axial force is applied to two steel rods that have the same
material, support conditions and cross-sectional area. If the cross-sections of the two rods
are, respectively, solid circular and hollow circular, which rod will buckle at a lower force
and why?

Problem 10.3: A bar of solid circular cross-section has built-in end conditions at both ends
and a cross-sectional area of 2cm2. The bar is just sufficient to support an axial load of 20 kN
before buckling. If one end of the bar is now set free from any constraint, it is obvious
that the bar has a lower critical buckling load (Figure P10.3). The load-carrying capacity,
however, can be maintained without consuming extra material but by making the bar hollow to
increase the second moment of cross-sectional area. Determine the external diameter of such a
hollow bar.

(a) (b)

L L

Figure P10.3

Problem 10.4: The pin-joined frame shown in Figure P10.4 carries a downward load P at C.
Assuming that buckling can only occur in the plane of the frame, determine the value of P that
will cause instability. Both members have a square section of 50mm×50mm. Take E = 70GPa
for the material.



194 Buckling of columns

C

B
A

1.6 m

1.2 m

0.9 m

P

Figure P10.4

Problem 10.5: A column is built up of two channels with two thin plates bolted to the flanges
as shown in Figure P10.5. Calculate the required distance between the backs of the two channels
in order to achieve an equal buckling resistance about both the X - and the Y -axis. If the column
is 1m long and fixed at both ends, determine its critical buckling load. Take E = 80GPa.

Y

X

y

x

x0

Ix = 1132 cm4

Iy = 165 cm4

A = 34 cm2

x0 = 2.3 cm

178 mm
152 mm

Figure P10.5
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In the previous chapters, the structural and stress problems were solved on the basis of static
equilibrium by considering the relationship between the internal forces (stresses) and the extern-
ally applied loads. The same problems can also be solved on the basis of the principle of
conservation of energy by considering the energy built up within a body. The energy is stored
due to the deformation in relation to the work done by the externally applied loads. In general,
the principle of conservation of energy in structural and stress analysis establishes the relation-
ships between stresses, strains or deformations, material properties and external loadings in the
form of energy or work done by internal and external forces. The basic concepts of work and
energy are as follows:

• Work is defined as the product of a force and the distance in the direction of the
force.

• Energy is defined as the capacity to do work.

Unlike stresses, strains or displacement, energy or work is a scalar quantity. Simple application
of an energy method is to equalize the work done by external loads and the energy stored in a
deformed body, while the most powerful method that can effectively solve a complex structural
and stress problem is based on the principle of virtual work.

11.1 Work and strain energy

11.1.1 Work done by a force

In order to accomplish work on an object there must be a force exerted on the object and it
must move in the direction of the force. The unit of work is, for example, N m, and is also called
Joules.

In Figure 11.1, the work done by the force, F , to move the mass by a distance, d, is

Work= F× cos�×d (11.1)

Distance d

Force F 

θ

Figure 11.1
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Table 11.1 Strain energy

Axial deformation Bending Torsion

Internal axial force: N�x�
Young’s modulus: E
Cross-sectional area: A
Member length: L

Bending moment: M�x�

Young’s modulus: E
Second moment of
area: I�x�
Member length: L

Twist moment: T�x�
Shear modulus: G
Second polar moment
of area: J�x�
Member length: L

U = 1
2

∫ L

0

N2�x�

EA
dx U = 1

2

∫ L

0

M2�x�

EI
dx U = 1

2

∫ L

0

T 2�x�

GJ
dx

11.1.2 Strain energy

In a solid deformable body, the work done by stresses on their associated deformation (strains)
is defined as strain energy. In general, strain energy is computed as:

u=
�∫

0

�d� (11.2a)

and

U =
∫
Vol

udV (11.2b)

where u denotes strain energy per unit volume and U is the total strain energy stored in a body.
The strain energies due to different types of deformation are listed in Table 11.1.

If a member is subjected to a combined action of axial force, bending moment and torque,
the strain energy is:

U = 1
2

∫ L

0

N2�x�

EA
dx+ 1

2

∫ L

0

M2�x�

EI
dx+ 1

2

∫ L

0

T 2�x�

GJ
dx (11.3)

11.2 Solutions based on energy method

The linearly elastic system shown in Figure 11.2 is subjected to a set of point loads. The following
theorems establish the relationship between the applied forces and the displacements in the
directions of the forces.

n

F1
F2

Fn

δ1 δn

δ2

Figure 11.2
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11.2.1 Castigliano’s first theorem

If the strain energy of an elastic structural system is expressed in terms of n independent
displacements, �1, �2, � � � , �n, associated with a system of prescribed forces F1, F2, � � � ,
Fn, the first partial derivative of the energy with respect to any of these displacements �i ,
is equal to force, Fi , at point i in the direction of �i .

The mathematical expression of the theorem is:

�U

��i
= Fi (11.4)

In order to use Castigliano’s first theorem, the strain energy must be expressed in terms of
displacements �i (i = 1, 2, � � � 
 n).

11.2.2 Castigliano’s second theorem

If the strain energy of a linear elastic structural system is expressed in terms of n inde-
pendent forces , F1, F2, � � � , Fn, associated with a system of displacements, �1, �2, � � � ,
�n, the first partial derivative of the energy with respect to any of these forces, Fi , is equal
to displacement, �i , at point i in the direction of Fi .

The mathematical expression of the theorem is:

�U

�Fi
= �i (11.5)

In order to use Castigliano’s second theorem, the strain energy must be expressed in terms of
forces Fi (i = 1, 2, � � � 
 n).

For the energy expressed in the form of Equation (11.3):

�i =
�U

�Fi
=

∫ L

0

N�x�

EA

�N�x�

�Fi
dx+

∫ L

0

M�x�

EI

�M�x�

�Fi
dx+

∫ L

0

T�x�

GJ

�T�x�

�Fi
dx (11.6)

In the two theorems (Equations (11.4) and (11.5)), the general force, Fi , can be a moment for
which the associated displacement is the rotation at the same point.

11.3 Virtual work and the principle of virtual work

11.3.1 Virtual work

A force, F , which may be real or imaginary and acts on an object that is in equilibrium under a
given system of loads, is said to do virtual work when the object is imagined to undergo a real
or imaginary displacement in the direction of the force. Since the force and/or the displacements
are not necessarily real, the work done is called virtual work.
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Fa Fbda

(a) (b)

Figure 11.3

Virtual work is classified as follows:

• External virtual work if the work is done by real or imaginary externally applied forces
on a unrelated real or imaginary displacements of a system.

• Internal virtual work if the work is done by real or imaginary stresses on unrelated real
or imaginary strains of a system.

To accomplish virtual work, the virtual displacement or deformation can be any unrelated
deformation, but must satisfy the support conditions or boundary constraints of the system. For
example, Figure 11.3 shows a beam under two separate load-displacement systems. Case (a)
shows the beam’s real deformation under the action of the loads shown. Case (b) shows the
same beam that undergoes a real deformation under the action of a force, Fb.

If the deformation of Case (a) is taken as the virtual deformation of Case (b), additional to
the real deformation Case (a) has already had, the external virtual work done by Fb is:

�We = Fb×da

The internal virtual work done by the stresses caused by Fb in Case (b) on the virtual strains (real
strain of Case (a)) is:

�Wi =
∫
L

Mb�x�Ma�x�

EI
dx

where Ma�x� and Mb�x� are, respectively, the bending moments in Case (a) and Case (b).

11.3.2 The principle of virtual work

The principle of virtual work is one of the most effective methods for calculating deflections
(deformation). The principle of virtual work states as follows: if an elastic body under a system
of external forces is given a small virtual displacement, then the increase in work done by the
external forces is equal to the increase in strain energy stored.

In Figure 11.3, by taking the deformation of Case (a) as the virtual deformation of Case (b),
the principle of virtual work yields:

�We = �Wi
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or

Fb×da =
∫
L

Ma�x�Mb�x�

EI
dx (11.7)

In particular, if Fb is chosen as a unit force, the above equation yields the mid-span deflection
of the beam under the loads shown in Case (a), that is:

da =
∫
L

Ma�x�Mb�x�

EI
dx (11.8)

Equation (11.8) is called solution of the unit load method. For a general case involving axial
deformation, bending and torsion, the solution is:

�P =
∫ L

0

Na�x�Nb�x�

EA
dx+

∫ L

0

Ma�x�Mb�x�

EI
dx+

∫ L

0

Ta�x�Tb�x�

GJ
dx (11.9)

where

Na�x�
Ma�x� and Ta�x� are the real internal forces of a system subject to externally applied
loads.

Nb�x�
Mb�x� and Tb�x� are the internal forces if the same system subject to a unit force
(moment) at a particular point and in a particular direction.

�P is the displacement/rotation of the system at the location, subject to the real external
loads, where the unit force (moment) is applied.

Note: The displacement/rotation is in the same direction of the applied unit force/moment if
the computed displacement/rotation is positive. Otherwise, it is in the opposite direction of the
applied unit load.

11.3.3 Deflection of a truss system

Within the members of a truss system (pin-joined frame), there is no bending and twist moments
and the axial forces are constant along the length of each member. Thus, for a truss comprising
n members, Equation (11.9) is reduced to:

�P =
∫ L

0

Na�x�Nb�x�

EA
dx =

n∑
i=1

N
�i�
a N

�i�
b

EiAi

Li (11.10)

where N
�i�
a and N

�i�
b , Ei , Ai and Li are the respective forces, Young’s modulus, cross-sectional area

and length of the ith member. They are usually all constant within a member.
Application of the unit load method Equation (11.10) to find deflection of a truss system,

for example the vertical deflection at joint A of the truss shown in Figure 11.4, follows the
procedure below:

A

Figure 11.4
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Calculate the axial forces in all
members of the truss under the

externally applied loads.

Calculate the axial forces in all
members of the truss subjected to

ONLY a vertical unit force at joint A. 

Apply Equation (11.10) to
determine the vertical

displacement. 

Use the method of
joints or/and the

method of section.

P = 1

11.4 Key points review

• Any force will do work if it is associated with a deformation (displacement).
• Work is a scalar quality.
• Energy can be stored due to tension, compression, shearing, bending and twisting.
• Strain energy can be related to the change in dimension of body.
• For a material subject to externally applied loads, the work done by the applied loads

must equal the strain energy stored in the material.
• Virtual work can be done by real force on imaginary (virtual) displacement or imaginary

(virtual) force on real displacement.
• A imaginary (virtual) deformation of a system can be any possible deformation of

the system that satisfies the support conditions, including the real deformation of the
system.

• Castiglianos’s theorems provide relationships between a particular deformation and a
particular force at a point.

• The unit load method provides a convenient tool for computing displacements in
structural and stress analysis. It is applicable for both linear and nonlinear materials.

• A displacement obtained from applying the unit load method can be negative. In such
a case the displacement is in the opposite direction of the applied unit force.

11.5 Examples

EXAMPLE 11.1
The indeterminate truss shown in Figure E11.1 consists of three members having the
same value of EA. The truss is subjected to a downwards force F as shown. Determine
the axial forces in the three members by using Castigliano’s first theorem.
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B C

A

α α

F

D

L

Figure E11.1

[Solution] In order to use Castigliano’s first theorem, the strain energy must be expressed in
terms of displacement. For such a symmetric system, we assume that joint A has a small vertical
displacement �, which is the elongation of member AC. The elongation of members AB and AD
can be easily determined from geometrical relations. The elongations are used to calculate the
strain energy that can be subsequently used, along with the equilibrium condition, to compute
the axial forces within each of the members.

B C

A

α α

∆

D

Assume that the elongation of AC, AB and AD are, respectively, �, �AB and �AD. For element
AC under axial tension, applying Hooke’s law yields:

� = E�

or

NAC

A
= E

�

L

then:

NAC = EA
�

L

The strain energy of this member is (Table 11.1):

UAC = 1
2

∫ L

0

N2�x�

EA
dx = 1

2
EA

(
�

L

)2

× L= EA�2

2L
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For members AB and AD, since their length is L/ cos� and elongations are, respectively, �AB

and �AD, the strain energy stored in these two members are:

UAB =
EA��AB�

2

2�L/ cos��
= EA��AB�

2 cos�
2L

UAD = EA��AD�
2

2�L/ cos��
= EA��AD�

2 cos�
2L

The total strain energy stored in the truss system is:

U = UAB+UAC+UAD

= EA��AB�
2 cos�

2L
+ EA�2

2L
+ EA��AD�

2 cos�
2L

By Castigliano’s first theorem, the axial forces in these members are, respectively:

NAC = �U

��
= EA�

L

NAB =
�U

��AB
= EA�AB

L
cos�

NAD = �U

��AD
= EA�AD

L
cos�

From the geometry, the elongation of AC, AB and AD are, respectively, �, �AB = � cos� and
�AD = � cos�. Thus:

NAB =
EA�AB

L
cos�= EA�

L
cos2 �

NAD = EA�AD

L
cos�= EA�

L
cos2 �

Applying the method of joint to A yields:

NAB NAD

NAC

αα

FA

NAC+NAB cos�+NAD cos�= F

EA�

L
+ EA�

L
cos3 �+ EA�

L
cos3 �= F

�= F

EA

L
+ EA

L
cos3 �+ EA

L
cos3 �

= F

EA

L
+2

EA

L
cos3 �
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Substituting the above � into the expressions of the three member forces yields:

NAC = EA�

L
= F

1+2cos3 �

NAB = NAD = EA�

L
cos2 �= F cos2 �

1+2cos3 �

EXAMPLE 11.2
A cantilever beam supports a uniformly distributed load, q. Use Castigliano’s second
theorem to determine the deflections at points A and B (E and I are constant).

q

L /2L /2

A B C

Figure E11.2

[Solution] To use Castigliano’s second theorem, imaginary forces FA and FB are applied at points
A and B, respectively, in the calculation of strain energy. To remove them, these imaginary forces
will be replaced by zeros after the derivatives have been taken.

q

L /2 L /2A
B C

x

FA FB

The strain energy for a beam is (Table 11.1):

U = 1
2

∫ L

0

M2�x�

EI
dx

The bending moment due to the applied distributed load and the two imaginary forces is (see
Section 6.2.3):

M�x�=−FA 
x−0�− FB

〈
x− L

2

〉
− 1

2
q 
x−0�2

=−FAx− FB

〈
x− L

2

〉
− 1

2
qx2

By Castigliano’s second theorem (Equation (11.6)), the vertical deflections at A and B are,
respectively:
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Introduce FA = FB = 0
after the derivative.�A = �U

�FA
=

∫ L

0

M�x�

EI

�M�x�

�FA
dx

=
∫ L

0

−PAx−PB 
x− L/2�−qx2/2
EI

�−x�dx

=
∫ L

0

qx2/2
EI

xdx = qL4

8EI

Introduce FA = FB = 0
after the derivative.�B =

�U

�FB
=

∫ L

0

M�x�

EI

�M�x�

�FB
dx

=
∫ L

0

−PAx−PB 
x− L/2�−qx2/2
EI

× �−1�
〈
x− L

2

〉
dx

=
∫ L

0

qx2/2
EI


x− L/2�dx

=
∫ L

L/2

qx2/2
EI

�x− L/2�dx = 17qL4

384

The above deflections can be verified by the formulas in Table 6.2.

EXAMPLE 11.3
Use the unit load method to find the deflections at A and B of the beam shown in
Figure E11.3.

A B

x

C

A B C

A B C
Case (a) 

Case (b) 

L /2

L /2

L /2 L /2

L /2

L /2

FA = 1

FB = 1

Figure E11.3

[Solution] To apply Equation (11.9) to solve this problem, Case (a) is set as the beam subject to
the uniformly distributed load and Case (b) is set as the beam subject to a unit downward force
applied at points A and B, respectively.

The bending moments of Cases (a) and (b) can be calculated and introduced into Equa-
tion (11.9) to compute the deflections.

The bending moment of Case (a) is:

Ma�x�=−qx2

2
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The bending moments of Case (b) are, respectively:

Mb�x�=−FA× x =−x

when only FA is applied, and

Mb�x�= 0
 0≤ x ≤ L/2
Mb�x�=−FB× �x− L/2�=−�x− L/2�
 L/2≤ x ≤ L

when only FB is applied. Thus:

�A =
∫
L

Ma�x�Mb�x�

EI
dx =

∫
L

�−qx2/2��−x�

EI
dx = qL4

8EI

�B =
∫
L

Ma�x�Mb�x�

EI
dx =

∫ L/2

0

�−qx2/2��0�
EI

dx+
∫ L

L/2

�−qx2/2��−x+ L/2�
EI

dx

= 17qL4

384EI

The results are identical to the solutions from Example 11.2.

EXAMPLE 11.4
The plane frame structure is loaded as shown in Figure E11.4. Determine the horizontal
displacement, the vertical deflection and the angle of rotation of the section at C. The
stiffness of the two members, EI, is constant. Ignore axial and shear deformation of the
members.

x1
x2

q

C
B

A

Case (a)

a

a

Figure E11.4

[Solution] The horizontal displacement, the vertical deflection and angle of rotation at C
can be determined by applying a unit horizontal force, a vertical force and a unit bending
moment, respectively, at C. Since both the axial and the shear deformation are ignored, only
the strain energy due to bending is required when applying the unit load method. In Equa-
tion (11.8), the system shown in Figure E11.4 is taken as Case (a), and Case (b) is taken as
follows:
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CB B C CB

A A A

a

Case (b) for
horizontal
displacement

Case (b) for
vertical
deflection

Case (b) for
rotation

a a a

Pb
H

= 1
Pb

V
= 1

Mb = 1

a a

Since the frame consists of members of different orientations, local coordinates, x1 for the
column and x2 for the beam, are set to simplify calculation of the bending moment.

Bending moment in the
column from A to B 0≤ x1 ≤ a

Bending moment in the
beam from C to B 0≤ x2 ≤ a

Case (a) Figure E11.4 Ma�x�=−qa2

2
Ma�x�=−qx22

2
Case (b) Horizontal
displacement at C

Mb�x�=−PH
b �a−x1�=−�a−x1� 0

Case (b) deflection at C Mb�x�=−PV
b a=−a Mb�x�=−PV

b x2 =−x2

Case (b) rotation at C Mb�x�=−Mb =−1 Mb�x�=−Mb =−1

Introducing the bending moments from the above table into Equation (11.8) yields the following.
The horizontal displacement at C is:

dV
C =

∫
L

Ma�x�Mb�x�

EI
dx =

∫
CB

�−qx22/2�× �0�
EI

dx2+
∫
AB

�−qa2/2�× �x1−a�

EI
dx1

= qa4

4EI

The vertical deflection at C is:

dV
C =

∫
L

Ma�x�Mb�x�

EI
dx =

∫
CB

�−qx22/2�× �−x2�

EI
dx2+

∫
AB

�−qa2/2�× �−a�

EI
dx1

= 5qa4

8EI

The angle of rotation at C is:

�C =
∫
L

Ma�x�Mb�x�

EI
dx =

∫
CB

�−qx22/2�× �−1�
EI

dx2+
∫
AB

�−qa2/2�× �−1�
EI

dx1

= 2qa3

3EI
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EXAMPLE 11.5
An aluminium wire 7.5m in length with a cross-sectional area of 100mm2 is stretched
between a fixed pin and the free end of the cantilever as shown in Figure E11.5. The
beam is subjected to a uniformly distributed load of 12 kN/m. The Young’s modulus and
moment of initial of the beam are, respectively, 200GPa and 20×106mm4. Determine
the force in the wire.

A

y

3 m

B
C

x

Figure E11.5

[Solution] This is a statically indeterminate structure of first order. The joint at A can be released
and replaced by an unknown axial force FA acting at A. The strain energy of the system can then
be calculated in terms of the applied distributed load and the unknown axial force. From the
Castigliano’s second theorem (Equation (11.6)), the derivative of the strain energy with respect
to FA yields the displacement of A in the vertical direction. This vertical displacement must be
zero since the point is pinned to the ceiling, which provides the following equation for the
solution of the unknown axial force, FA.

�U

�FA
= 0

q

C
B

FA

A

The axial force in the wire is FA and the strain energy in AB is:

UAB =
1
2

∫ B

A

F2A
EA

dx = 1
2
F2ALAB
EA
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The bending moment in the beam is FAx− 1
2qx

2 and the strain energy in BC is:

UBC = 1
2

∫ C

B

M�x�2

EI
dx = 1

2

∫ C

B

�FAx−qx2/2�2

EI
dx

Then U = UAB+UBC and

�U

�FA
= �UAB

�FA
+ �UBC

�FA
= FALAB

EA
+
∫ C

B

�FA−qx2/2�
EI

xdx

= FALAB
EA

+ 1
EI

[
FAL

2
BC

2
− qL4BC

8

]
= 0

So:

FA×7�5m

70×109 N/m2×100×10−6 m2
+ FA× �3m�2/2

200×109 N/m2×20×10−6 m4

= 12×103 N/m× �3m�4/8

200×109 N/m2×20×10−6 m4

which yields:

FA = 9�145kN

The axial force in the wire is 9.145 kN.

EXAMPLE 11.6
To determine the deflection at A of the beam (Figure E11.6) loaded with a point force
P and a bending moment PL, the following solution is obtained by using Castigliano’s
second theorem. Is the solution correct and why?

A

P
M = PL

L

Figure E11.6

The bending moment of the beam is:

M�x�= PL−Px = P�L− x�

From Equation (10.6)
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�B =
�U

�P
=

∫ L

0

M�x�

EI

�M�x�

�P
dx =

∫ L

0

P�L− x�

EI
�L− x�dx

= PL3

3EI

[Solution] The question tests your understanding of Castigliano’s second theorem. The strain
energy in Equation (11.6) must be expressed in terms of the applied loads that must be
considered as independent forces. In this question the applied bending moment is related
to the applied point force by P. Thus the derivative with respective to P is taken in relation
to not just the force, but also the applied moment. The solution shown above is, therefore, not
correct. The correct solution can be obtained by expressing the strain energy in terms of the
force P and a bending moment, MP , that is considered completely independent of P. After
the derivatives with respect to P is taken, the bending moment is replaced by PL to obtain
the deflection.

The bending moment of the beam is:

M�x�=MP −Px

From Equation (11.6):

�B =
�U

�P
=

∫ L

0

M�x�

EI

�M�x�

�P
dx =

∫ L

0

MP −Px

EI
�−x�dx

MP is replaced by

PL here.
=

∫ L

0

PL−Px

EI
�−x�dx =−PL3

6EI

Because the final solution is negative, the deflection at A is in the opposite direction of the
applied force P.

EXAMPLE 11.7
Find the vertical deflection of point E in the pin-jointed steel truss shown in Figure E11.7
due to the applied loads at B and F. EA is constant for all members.

FE

DCB
A

2P

P

b

3 × b

Case (a)

Figure E11.7
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[Solution] This is a typical example showing how the unit load method can be applied to find
deflection of a truss system. Since this is a pin-jointed structure subject to loads applied through
joints only, within each member, only a constant axial force exists and Equation (11.10) applies.
Thus, the system shown in Figure E11.7 is taken as Case (a) and the following system is taken
as Case (b), where an imaginary unit force is applied vertically at E.

FE

DCB
A

Pb = 1

b

3 × b

Case (b)

To use Equation (11.10), the axial forces of all the members for Cases (a) and (b) must
be calculated first. This can be easily done by the method of joint or/and the method of
section.

The calculation of the axial forces and the deflection by Equation (11.10) can be presented
in the following tabular form.

Member Length Na Case (a) Nb Case (b) Na×Nb× L

AB b
4P
3

2
3

8Pb
9

AE
√
2b −4

√
2P
3

−2
√
2

3
−16

√
2Pb
9

BC b
5P
3

1
3

5Pb
9

BF
√
2b −

√
2P
3

√
2
3

−2
√
2Pb
9

BE b
4P
3

−1
3

−4Pb
9

CD b
5P
3

1
3

5Pb
9

CF b 0 0 0

DF
√
2b −5

√
2P
3

−
√
2
3

10
√
2Pb
9

EF b −4P
3

−2
3

8Pb
9∑

all members

NaNbL

EA
6�22

Pb

EA

The vertical deflection at point E is 6.22 Pb/EA downwards.
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EXAMPLE 11.8
Consider the same truss system shown in Figure E11.7. Calculate the increase of the
distance between points C and E.

FE

DCB
A

Pb = 1

Pb = 1

Figure E11.8

[Solution] This question asks for relative displacement of points C and E. Instead of applying unit
load at C and E and carrying out respective calculations for Case (b), a pair of unit loads is applied
simultaneously as shown in Figure E11.8. After calculating the axial forces of Figure E11.8 and
following the same procedure of Example 11.7, the relative displacement of C and E, that is,
the increase of distance between the two points, is obtained.

Replacing the axial forces in the column of Nb (in Example 11.7) by the respective axial forces
calculated from Figure E11.8 yields the following:

Member Length Na Nb Na×Nb× L

AB b
4P
3

0 0

AE
√
2b −4

√
2P
3

0 0

BC b
5P
3

√
2
2

5
√
2Pb
6

BF
√
2b −

√
2P
3

−1
2Pb
3

BE b
4P
3

√
2
2

2
√
2Pb
3

CD b
5P
3

0 0

CF b 0

√
2
2

0

DF
√
2b −5

√
2P
3

0 0

EF b −4P
3

√
2
2

−2
√
2Pb
3∑

all members

NaNbL
EA

1�85
Pb

EA

The distance between C and E is increased by 1.85 Pb/EA.
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11.6 Conceptual questions

1. Define ‘strain energy’ and derive a formula for it in the case of a uniform bar in tension.
2. Can strain energy be negative?
3. Can virtual strain energy be negative?
4. When a linearly elastic structure is subjected to more than one load, can the strain energy

stored in the structure due to the applied loads be calculated by superposition of the strain
energy of the structure under the action of the loads applied individually? Discuss the
following two cases.

U1
U1

U2U2

U U

U = U1 + U2    ? U = U1 + U2    ?

Figure Q3.1

5. Explain how the deflection of beam under a single point load can be found by a strain
energy method.

6. State and explain Castigliano’s first theorem.
7. State and explain Castigliano’s second theorem. How can it be used to determine support

reactions of a structure?
8. What are meant by the terms ‘virtual force’, ‘virtual displacement’ and ‘virtual work’?
9. What is the difference between the work done by a real force and that by a virtual

force?
10. Can virtual work be negative?
11. When the unit load method is used to determine the deflection at a point and the calculated

deflection is negative, explain why this happens and what the direction of the deflection is.
12. Explain the principle of virtual work and how it can be used in structural and stress

analysis.

11.7 Mini test

Problem 11.1: The beam shown in Figure P11.1 is subjected to a combined action of a force
and a moment. Can the strain energy under the combined action be calculated by superposition
of the strain energy stored in the beam due to the action of the force and the moment applied
separately?
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Yes/NoYes/No

Yes/No Yes/No

Figure P11.1

Problem 11.2: The beam shown in Figure P11.2 is subjected to two identical point forces
applied at A and B. The strain energy of the beam, U, is expressed in terms of P, and the
derivative of U with respect to P, �U/�P, is:

A B

P P

Figure P11.2

A. the deflection at A
B. the deflection at B
C. the average deflection at A and B
D. the total deflection at A and B.

Problem 11.3: Determine the deflection at A and rotation at B of the beam shown in
Figure P11.3. EI is a constant.

A
B

ql q

l l

Figure P11.3

Problem 11.4: Determine the deflection at G of the truss shown in Figure P11.4 using the
unit load method. The top and bottom members are made of timber with Etb = 10GPa and
Atb = 200cm2. The diagonal members are also made of timber with Ed = 10GPa and Ad =
80cm2. The vertical members are made of steel with Esteel = 20GPa. The cross-sectional areas
of the vertical members are Av = 1�13cm2 except the central one, whose cross-sectional area is
doubled.
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G

P

P

P

P = 15 kN

P

6 × 2 m = 12 m

Figure P11.4

Problem 11.5: Find the vertical deflection at point B in the pin-jointed steel truss shown in
Figure P11.5 due to the applied load at B. Let E = 200GPa. Use Castigliano’s second theorem
and the unit load method.

B

1.2 m

A = 60 mm2

L = 1 m

1.8 m

P = 12 kN

A = 90 mm2

A = 150 mm2

Figure P11.5
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principal stresses and principal planes 131,

135, 136
representation of stress at a point 133, 138
stresses on inclined planes 133

compression 4
continuity condition 109
critical buckling load 178
curvature of deflection curve 107

deflection of beams 53
differential equation of symmetrical bending

108
Macaulay’s method 110
sign convention 108
statically indeterminate beams 122

deformation 3
deformation of axially loaded structural

members 18
distortional energy density 169, 170
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effective length 181
effective length factor 181
elastic and linearly elastic materials 7–10
elastic modulus of section 82, 91
electrical resistance strain gauges 155
elongation 4
energy 20
energy methods 195

Castigliano’s first theorem 197
Castigliano’s second theorem 197
strain energy due to torsion 196
strain energy in bending 196
strain energy in tension and compression 20,

196
unit load method 199

equation of beam deflection 108
equilibrium of force systems 3
Euler formula 179–81
experimental measurement of surface strains

and stresses 155

failure 10, 166
fixed (built-in) beams 55
flexural rigidity 107
force 1

normal 3
shear 3

free body diagrams 4, 12

generalized Hooke’s law 8, 10
graphical method for complex stress 137

hinges 55
Hooke’s law 8, 10
hoop stress 144

inertia moment of area 37, 38
integration method 108
internal force 2–4
isotropic materials 8

joint 4

lever arm 1
limit of proportionality 10
linear superposition 109
load, types of

axial 4, 16, 178
bending moment 3, 4, 53
concentrated 1, 2
distributed 1, 2
externally applied 1
internal forces 2–4
load, shear force and bending moment

relationships 56
normal force 4
notation and sign convention 16, 36, 54
shear 3, 4

Macaulay’s method 110
maximum principal stress theory 167
maximum shear stress theory 169
method of joints 4
method of sections 3, 4
modulus of elasticity 8
Mohr’s circle of stress 137
moment of a force 1

neutral plane, neutral axis 81
normal force 4

notation and sign convention 16

parallel axis theorem 83, 84
pin-jointed plane truss 199, 210, 211
point of contraflexure (inflection) 181
Poisson effect 8
Poisson’s ratio 8
polar moment of inertia 37, 38
principal strains 152
principal stresses 131, 135
principle of virtual work 197, 198
proportional limit 10

radius of gyration 181
relationships between the elastic constants 8

Saint-Venant’s principle 20
second moment of inertia 81
shear force 3, 4

diagrams 54
notation and sign convention 55

shear of beams 53
shear stress distribution in symmetrical

sections 84
slenderness ratio 178, 181
slope of deflection curve 109
stability 1
state of stress 131
stiffness 1
strain 7

normal strain 7
shear strain 7

strain energy 20, 195
in bending 196
due to torsion 196
in tension and compression 20, 196

strain gauge rosettes 156
strains on inclined planes 154
strength 1, 10, 166

ultimate strength 10
yield strength 10

stress 5
caused by temperature 21
direct stress in tension and compression 5
shear stress in shear and torsion 6

stress concentration 20
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stresses on inclined planes 133
stress–strain curves 14
stress–strain relationships 12

Hooke’s law 8, 10
shear modulus 8
Young’s modulus 10

superposition 109
support reactions 54, 55
support systems 54

fixed (built-in, encastré) 55
pinned 55
roller 55

temperature 21
tension 4
theories of elastic failure 166

brittle materials 167
ductile materials 167
maximum normal stress theory 167
maximum shear stress theory (Tresca)

169
shear strain energy theory (von Mises) 169

torque 3
torsion of beams 36

shear stress due to torsion 37
sign convention 36

solid and hollow circular section bars 37
strain energy due to torsion 196
torsional rigidity 38

torsion of rotating shaft 38
Tresca theory of elastic failure 169, 171
trusses 199, 210, 211
twist moment 3, 4
two dimensional state of stress 131

sign convention 132

ultimate stress (strength) 10
unit load method 199

virtual work 197
due to external force systems 198
principle of virtual work 197, 198
unit load method 199
work done by internal force systems 198
work, definition 195

von Mises theory of elastic failure 169, 171

work 195

yield strength 10
Young’s modulus 8
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